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The Hilbert-Huang transform (HHT) method, which is designed to analyze nonstation-
ary and nonlinear time-dependent data, is attracting lots of attention. The HHT first
applies the empirical mode decomposition (EMD) to decompose data into intrinsic mode
functions (IMF). The Hilbert transform then is applied to the IMFs to reveal its instan-
taneous frequency spectrum. However, because the EMD lacks analytical interpretation,
the meaning of IMFs is unclear. This work proposes an entropic analysis strategy to
provide an information-based interpretation. Based on this strategy, three applications
in data analysis are demonstrated: (1) studies of characteristic of white noise, (2) deter-
mination of minimum sampling rates to generate sufficient numbers of realizations, and
(3) a low pass noise filter design.

Keywords: Hilbert-Huang transform; empirical mode decomposition; intrinsic mode
function; maximum entropy; Bayesian interpretation.

1. Introduction

Data analysis is a crucial step in interpreting data and in revealing correspond-
ing underlying functions in all disciplines of science and engineering. The Fourier
transform is particularly favored by many disciplines to study time-dependent sig-
nals. However, when signals are generated from either nonstationary, nonlinear, or
both processes, the Fourier transform is inadequate. A wavelet transform method
based on the Fourier type transform is thus proposed for resolving this prob-
lem [Donoho and Johnstone (1994, 1995); Donoho et al., 1995]. Yet it still has
three shortcomings: (1) the limited length of the basic wavelet function makes
definition of the energy-frequency-time distribution difficult; (2) a nonadaptive
nature; and (3) it can only analyze nonstationary data [Huang et al. (1998);
Kizhner et al. (2004)]. Even though several approaches have been proposed to
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improve it [Polygiannakis et al. (2003); Lang et al. (1996); Sternickel et al.
(2001)] and shown promising results, their applications in nonlinear and nonsta-
tionary data analyses are still limited by the assumption of the Fourier trans-
form, which treats signals to be represented by combinations of sinusoids and
cosinusoids.

The Hilbert-Huang transform (HHT) method is proposed by Huang and his
colleagues to surmount these limitations [Huang et al. (1998)]. First, the HHT
decomposes the data through the empirical mode decomposition (EMD) method
into the intrinsic mode functions (IMFs) with different instantaneous frequencies
and the last component, the residue or the trend. An IMF satisfies two conditions:
(1) that the number of extrema and the number of zero crossings must either
equal or differ at most by one in the whole data set and (2) that the mean value
of the envelope defined by the local maximum and the envelope defined by the
local minima at any point is zero [Huang et al. (1998)]. Because the IMFs are
adaptive and locally determined, they have physical representation of the underlying
processes [Huang et al. (1998); Kizhner et al. (2004)]. In addition, IMFs form an
orthogonal set, thus they can be used as the basis to represent the data. After
obtaining the IMFs, one can perform instantaneous frequency analysis on IMFs
using either the Hilbert transform, Fourier transform based methods, or others
[Huang et al. (2009)]. Particularly [Huang et al. (2009)], show normalized Hilbert
transform and direct quadrature method outperform Hilbert transform, Wigner-
Ville distribution, the generalized zero crossing, and the Teager energy operator
methods to obtain instantaneous frequency. However, since our goal is to investigate
the meaning of IMFs, the computation of instantaneous frequency is not an issue
in this work.

Because the EMD method lacks analytical interpretation, it is unclear what
IMFs mean and also which IMF carries information relevant to underlying func-
tions of the raw data. Wu and Huang propose a hypothesis test-based strategy
with consideration of mean energy and periods of IMFs (hereafter denoted as the
WH method) to investigate the properties of IMFs [Wu and Huang (2004, 2005)].
However, the WH method becomes inadequate for low frequency IMFs. This inade-
quacy may be resolved based on the studies of Xu et al. (2009), in which they intro-
duce Fourier interpolation to better identify extrema of signals with low sampling
rates. Because the WH method only accounts the macroscopic properties of signals,
mean energy and mean period, the detailed information of IMFs is not spelled out
completely and the interpretation is limited. Despite these, the HHT has yielded
promising applications in many fields such as denoising [Flandrin et al. (2004a);
Khaldi et al. (2008); Kopsinis and McLauglin (2008a, 2008b); Boudraa and Cexus
(2006)], speech recognition [Huang and Pan (2006)], ground moving target indi-
cation [Cai et al. (2006)], geophysics [Huang and Wu (2008)], financial problems
[Huang et al. (2003); Wu et al. (2006)], and biological problems [Wu and Hu (2006);
Liang et al. (2005); Ai et al. (2008)].
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In this paper, our first goal is to develop an information theory-based approach
to provide a comprehensive interpretation of IMFs. Second goal is to demonstrate
three applications of this approach in data processing. Basically, the approach fol-
lows the Bayesian interpretation to treat probability as the state of knowledge about
the systems of interest rather than a frequency. Once we can assign each IMF a
probability distribution function (PDF), the extent of the information relevant to
the systems of interest codified in the PDF can then be measured by entropy.
Therefore, we can determine to what extent an IMF contains information. Because
a PDF contains complete information in the corresponding IMF, one can expect
the proposed approach to reveal more properties of IMFs than the WH method
that only accounts the macroscopic property of signals does. Furthermore, because
the proposed approach does not involve with mean period estimate, the inadequate
problem in the WH is dismissed.

The rest of this paper is structured as follows. Sections 2 and 3 will briefly
discuss the EMD method and the energy interpretation from the WH method,
respectively. Section 4 presents an entropic analysis strategy and a statistical study
of applying such a strategy to reveal properties of IMFs. Section 5 then discusses
three applications of the entropic strategy in data analysis: studies of characteristic
of IMFs of white noise, the determination of minimum sampling rate, and a low
pass noise filter. Finally, a conclusion is given.

2. Empirical Mode Decomposition

This section particularly focuses on the EMD of the HHT and briefly discusses its
rationale (please refer to Huang et al. (1998) for detailed derivations). The essence
of the EMD is to empirically identify the intrinsic oscillatory modes, which satisfies
two conditions introduced in the Introduction, by their characteristic time scales in
the data, and decompose the data accordingly. A sifting process is used to eliminate
riding waves and to make wave-profiles more symmetric to systematically extract
intrinsic oscillatory modes.

Consider a real time series signal Sreal(t) that is contaminated by noise n(t) and
generates

Sraw(t) = Sreal(t) + n(t), (1)

the raw data to be measured. The process first determines a mean of upper and
lower envelopes defined by local minimum and maximum in Sraw(t) respectively,
m1. Subtracting m1 from Sraw(t),

Sraw(t) − m1 = h1 (2)

should yields h1 as the first IMF. In reality, however, there may be overshoots and
undershoots in creating the two envelopes. Furthermore, the extrapolation used in
connecting two extremes will cause serious problems in the end point. Thus, the
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sifting process needs to be repeated several times

h1(k−1) − m1k = h1k, (3)

where k denotes the number of repetitions until h1k = C1(t) is an IMF. This is the
first IMF with the highest instantaneous frequency from the data. Thereafter, one
can separate C1(t) from the rest of data by

Sraw(t) − C1(t) = r1. (4)

One then continues the sifting process on the residue r1 to extract second IMF
and so on until either when the residue becomes so small that it is less than the
predetermined value of substantial consequence, or when the residue becomes a
monotonic function. Superposition of these IMFs and the residue CNc(t) will recover
the raw data, Sraw(t) =

∑Nc

i=1 Ci(t).

3. Energy Interpretation of Intrinsic Mode Functions

The crux of the WH method in interpretation of IMFs is to identify whether or not
an IMF carries information relevant to underlying functions of real signals based
on energy perspective [Wu and Huang (2004, 2005)]. A null-hypothesis test method
is introduced in the WH method, in which the null hypothesis is that an IMF
contains no information. Because white Gaussian noise contains no information, Wu
and Huang investigate properties of IMFs decomposed from noise to determine a
statistical distribution that associates with information-free data. By analyzing the
mean energy and periods of IMFs of white noise, Wu and Huang found the energy
distribution of each IMF can be described by the Chi-square distribution. From
this, one can determine the energy spread function of white noise with an upper
and lower boundary. The boundaries represent the confidence level to treat data as
a noise component. When the mean energy of a data’s IMF lies above the upper
boundary of the energy spread function, the null hypothesis is rejected. Therefore,
one can conclude that this IMF carries information relevant to underlying functions
of the data with the selected confidence level.

Although Wu and Huang have demonstrated the applicability of the WH method
[Wu and Huang (2004, 2005)], it still has two shortcomings. First, as mentioned in
Wu and Huang’s work [Wu and Huang (2004, 2005)], the WH method proves inad-
equate in analyzing low-frequency IMFs because of the inappropriate estimation
of the corresponding mean periods. Wu and Huang proposed using the extrema-
counting and Hilbert transform to resolve this problem [Wu and Huang (2004,
2005)]. However, the expectation values of the mean periods and the energy den-
sity are still likely to deviate from the theoretical values. This still does not correctly
identify an IMF as a component of noise.

Second, statistical physics shows that mean energy of signal, a macroscopic
quantity, only provides partial information of the corresponding systems. For exam-
ple, the microscopic properties of a thermal system such as equations of motion of



January 20, 2011 15:11 WSPC/1793-5369 244-AADA
S1793536910000562

Entropic Interpretation of Empirical Mode Decomposition 433

particles cannot be unveiled by thermodynamics because it only studies macroscopic
properties. Therefore, one can expect a limited interpretation of IMFs from the WH
method.

4. Entropic Interpretation

An alternative interpretation of IMF, which hinges on a conceptual breakthrough,
is proposed in this section. This breakthrough resulted from studies of statistical
mechanics and information theory. First, the development of statistical mechanics
shows that detailed information of thermal systems can be codified in a probabil-
ity distribution function PDF p(q), where parameters q characterize the system.
The canonical ensemble is an example. Not only one can study thermodynamical
quantities but one also can tackle problems such as irreversible thermodynamics
by utilizing concept of PDFs. This concept has become prominent after Shannon’s
work in communication theory [Shannon (1948)], later is recognized as information
theory. Based on the Bayesian interpretation, a PDF represents a state of knowl-
edge about systems of interest rather than merely a frequency. Furthermore, Cox
demonstrates that the state of knowledge can be manipulated through Boolean
algebra [Cox (1961)]. Shannon, therefore, can show that the extent of information
carried by a signal can be quantified by entropy S = −∑

q p(q) log p(q) [Shannon
(1948)] using axiomatic approach. This conceptual advance provides an information
theory-based approach to study statistical systems.

Based on this information treatment, we present a two-step strategy to investi-
gate properties of IMFs.

4.1. Entropic analysis strategy

Step 1: Signal clustering. After we apply the EMD to decompose the raw data
Sraw(t) into IMFs, Ci(t), where i = 1 · · ·Nc − 1, we cluster the IMFs into two
sets in a straightforward way. One set is the superposition of the first k IMFs
Nk(t) =

∑k
i=1 Ci(t), which has high instantaneous frequencies, where k will be

incrementally increased from 1 to Nc − 1. The superposition of the rest of the
IMFs, Sk(t) =

∑Nc

i=k+1 Ci(t) forms the other set. Note that we only consider a
simplest way of clustering signals here. There is no restriction of introducing other
clustering methods based on problems of interest.

Step 2: Information-rich components identification. Next, we ask to what
extent information relevant to underlying functions of Sraw(t) is carried in either
the Nk(t) or Sk(t) set.

It has been shown that the relative entropy or negative Kullback-Leibliewr
distance of two PDFs Pi and P ′

i of observing a system at state i, S[P, P ′] =
−∑

i Pi log Pi/P ′
i ≤ 0, quantifies the difference of extent of information carried

in both PDFs [Kullback (1997)]. Tseng and his colleagues extend the use of relative
entropy for model [Tseng (2006)] and variable [Chen et al. (2007)] selection problems
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in physics and geology. They further consider Pi to be the test probability models
and P ′

i as a uniform reference distribution, which represents complete ignorance of
the systems. In this consideration, the maximum relative entropy indicate the test
model is identical to the uniform reference. The test model also represents complete
ignorance of the systems. Namely, it carries no information relevant to the system.
On the contrary, the minimum relative entropy of a test model and the uniform
reference indicate that the test model contains information the most. Therefore, the
test model will be selected as the preferred model. Notes that the entropic analysis
provides a complete ranking scale for all possible probability models.

Therefore, according to this Bayesian logic, suppose one can assign probabil-
ity models to Nk(t), the extent of information codified in Nk(t) can be measured
by relative entropy of such probability models and the information-free reference
probability distribution. The question then becomes what are probability models
for Nk(t) or Sk(t) and what is an appropriate information-free reference model.

Because an important property of a time-series data is its oscillation ampli-
tude x, we consider the PDF for the Nk(t) to be function of amplitude x, P̂Nk

(x).
In this work, the exact probability P̂Nk

(x) is approximated by the normalized his-
togram distribution of the amplitudes x of Nk(t), PNk

(x). Notes that because we
only consider a large amount of data, this approximation should be statistically
legitimate to represent the real probability distribution.

Next, we consider white Gaussian noise to represent the information-free refer-
ence. Specifically, the reference is set to N noise

k (t), the superposition of first k IMFs
decomposed from a pure noise that is generated from the same noise sources in
the raw data Sraw(t). Therefore, one also can obtain the probability distribution
PNnoise

k
(x) from noise amplitude histograms for the N noise

k (t). Although our choice
of noise as reference is the same as the WH method does, the way of utilizing it is
different. Here, we take the complete amplitude distribution of noise into account
while the WH method only considers the tail beyond certain percentile of the energy
distribution of noise.

Finally, to quantify the extent of information codified in PNk
(x), we calculate

relative entropy S[P, P ′], where P ′ is set to PNk
(x) and P is set to information-free

PNnoise
k

(x). Namely,

S[PNnoise
k

, PNk
] = −

∞∑

x=−∞
PNnoise

k
(x) log

PNnoise
k

(x)

PNk
(x)

≤ 0. (5)

It measures average differences of logPNk
(x) and log PNnoise

k
(x) over all PNnoise

k
(x).

Maximum relative entropy indicates PNnoise
k

(x) is identical to PNk
(x) and PNk

(x)
is completely information free. On the other hand, minimum relative entropy,
mink S[PNnoise

k
, PNk

], indicates the maximum information differences between
PNnoise

k
(x) and PNk

(x). The ratio S[PNnoise
k

, PNk
]/ minS[PNnoise

k
, PNk

] denotes to
what extent PNk

is close to the complete information-free distribution among all
PNk

(x)s. Therefore, we can define a normalized information scale to measure the
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information extent codified in probability distribution PSk
(x) for the corresponding

Sk(t) set as

Pinfo(k) def= 1 − S[PNnoise
k

, PNk
]/minkS[PNnoise

k
, PNk ] ≤ 1. (6)

When Pinfo(x) = 0 indicates Nk(t) is completely information free. Because the
EMD does not guarantee the complete separation of information-rich and -free
components from raw data, an IMF may contain partial information. Namely,
Nk(t) may contain partial information. For Pinfo(x) = 0.5, it indicates that the
corresponding Nk(t) only contains half extent of information. Therefore, in order
to not to dismiss any information, we consider an Nk(t) to be an information-rich
component when the corresponding PNk

(x) is larger than 0.5.
One can expect this information interpretation to be consistent with energy

interpretation. Furthermore, because a PDF contains complete information of an
IMF, it shall reveal more properties of IMFs than the WH method does.

4.2. Numerical investigations of the applicability

of entropic strategy

Here, we demonstrate the application of the proposed strategy in interpreting IMFs
by studying two contaminated test signals. We first consider a pure sine wave func-
tion to illustrate the use of the entropic strategy. Afterward, we consider a more
general case, a test signal that has nonstationary amplitudes and multiple oscilla-
tion frequencies, to show the applicability of the approach.

Pure sine wave. The first one-second long time-dependent test signal is given
by Sreal(t) = sin(2πfsit) with signal frequency fsi = 2Hz and is sampled at the
rate fs = 1000Hz, where t denotes time. The test signal is contaminated by white
Gaussian noises using the MATLAB in-house tool (awgn) with different SNRs =
10, 5, 0,−5,−50dB as raw test datum Sraw(t). Additionally, a white Gaussian noise
with the same length, arbitrary power strength, and sampled at the same rate of
fs = 1000Hz is generated using the MATLAB tool (wgn) as the reference. Totally,
100 samples for each six raw test data are generated for the statistical analysis.

Figure 1 shows an example of six IMFs and one residue of the first raw test signal
with SNR = 10dB. We cluster these IMFs into two groups, (Nk(t),Sk(t)). Similarly,
we obtain two groups for noise, (N noise

k (t),Snoise
k (t)). The probabilities PNk

(x) and
PNnoise

k
(x) of oscillation amplitude x in Nk(t) and N noise

k (t) are assigned by ampli-
tude histograms, as shown in Fig. 2, in which the dark hollow squares denote PNk

(x)
and gray hollow squares denote PNnoise

k
(x). The figure shows two remarks. First,

as expect, PNnoise
k

(x) is almost normally distributed for different k values. Second,
it indicates that when the k value is less than six, both probability distributions
share similarities in mean values and standard deviations. The differences between
the distributions arise when the k value is larger than six. This qualitative com-
parison suggests that the Nk(t) for k ≤ 5 is highly likely to be the information-free
component.
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Fig. 1. An example of the EMD method. The top row shows the raw data, which is the linear
superposition of the test signal Sreal(t) = sin(2πfsit) and a white Gaussian noise with SNR =
10 dB. Six IMFs and one residue are then decomposed from it using the EMD.

Fig. 2. An example of probability distributions of intensities in the Nk(t) and the N noise
k (t) for

the case of SNR = 10 dB. Notes that the calculated probability values of intensities are denoted
by hollow symbols.
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Fig. 3. This figure plots Nk(t) for the test signal contaminated by noise with five various
strengths. It also shows the corresponding Pinfo(k), Eq. (6), on the right.

Next, we quantitatively determine the extent of information in IMFs according
to the scale Pinfo(k) of Nk(x) that carries information, Eq. (6). Figure 3 shows Nk(t)
and the corresponding Pinfo(k) values on the right for all five cases. In panel (A), the
test signal is severely contaminated by white noise. As expect, the scale Pinfo(k)s in
this case are less then 0.5 for all Nk(t) except N1(t). Notes that because the relative
entropies of Nk(x) for the case of SNR = −50dB are all within 0 and −1, the Nk(t)
is still likely to be noise dominant even though the corresponding Pinfo(k) is larger
than 0.5. Thus, all Nk(t)s are noise dominant. When the SNR value is increased
as shown in panel (B)–(E) consecutively, the real signal, sin(2πfsit), is observed
in Nk(t)s with k less than 6 or 7. The corresponding Pinfo(k) are larger than 0.7.
Furthermore, the Pinfo(k) is raised from around 0.75 in (B), 0.9 in (C) and (D) to
0.97 in (E) as the SNR is increased.
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Fig. 4. The second test signal that is contaminated by white Gaussian noises with SNR = 0 dB
and its 12 IMFs.

A more complicated signal. The second test signal is 8 seconds long and given by
S′

real(t) = 1000 ∗ exp(−t/1000) sin(2πfsit) cos(2πf ′
sit) with signal frequency fsi =

2 Hz and f ′
si = 4Hz. The sampling rate is fs = 8000Hz. Furthermore, it is also

contaminated by white Gaussian noise with SNR = 0 dB. The first row of Fig. 4 is
the generated raw data and shows a gradually decreased amplitude and two distinct
frequencies. The next 12 rows show the IMFs obtained from EMD. The results
indicate that the EMD primarily decompose the signal that has large amplitude
into IMFs 5, 6, and 7. The IMFs 8 to 12 are the rests of components left in the
signal. First four IMFs are likely the components of white Gaussian noise.

Following the same approach as before, we show 12 Nk(t) components in Fig. 5
with the corresponding Pinfo(k) values list on the right. It shows when we include
IMF 5 in the N4(t) to get N5(t) the information scale of N5(t), Pinfo(5) jumps from
0.26 to 0.85. Furthermore, when IMFs 6 and 7 are included, Pinfo(6) and Pinfo(7)
are 0.8 and 0.93, respectively.

Remark. The above numerical studies show that the scale Pinfo(k) correctly quan-
tifies the extent of information that is codified in Nk(x). Based on this scale, the
IMFs that are information-free components can be identified. This way of identifi-
cation is completely different from the WH method, in which one simply consider
energy perspective to identify whether or not an IMF contains information with cer-
tain confidence levels. The WH method cannot further determine to what extent
information is codified in IMFs. These studies suggest three applications in data
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Fig. 5. This figure plots Nk(t) of the first four seconds of the second contaminated test signal.
The corresponding Pinfo(k), Eq. (6), are listed on the right.

analysis: studies of characteristic of IMFs of white noise, determination of mini-
mum sampling rates, and design of a low pass filter. We will discuss them in next
section.

5. Three Applications of the Entropic Strategy

5.1. Characteristic of IMFs of white noise

The first application is to study the characteristics of IMFs of white noise based
on the step 1 signal clustering of the proposed strategy. Because IMFs are approxi-
mately orthogonal to each other, one can show that the energy density of the Nk(t)
set is

ENk
=

1
N

N∑

t=1

[Nk(t)]2 ∼= 1
N

N∑

t=1

k∑

i=1

[Ci(t)]2 (7)

and the energy density of the Sk(t) set is

ESk
=

1
N

N∑

t=1

[Sk(t)]2 ∼= 1
N

N∑

t=1

Nc−1∑

i=k+1

[Ci(t)]2. (8)

Furthermore, we can compare the energy of the two sets by defining the energy
ratio,

Rk = 10 log10

ESk

ENk

. (9)



January 20, 2011 15:11 WSPC/1793-5369 244-AADA
S1793536910000562

440 C.-Y. Tseng & H. C. Lee

Fig. 6. The Rk distribution of white Gaussian noise with three different intensities. Black line is
a linear equation fitting to the mean Rk.

Based on this definition, a characteristic of IMFs of white noise other than the
one discovered by Wu and Huang (2004, 2005) is revealed through the following
numerical studies.

Consider 100 samples of three white Gaussian noises with different powers of
1, 10, and 100 dBW, each with 1000 data points, are generated through the MAT-
LAB tool (wgn). After applying, the EMD decomposes these 100 samples into IMFs;
the ratio Rk of each sample is calculated for k = 1 · · ·Nc − 1. The mean values and
standard deviations of these Rk are computed and shown in Fig. 6. The figure
shows that the Rk distribution of a white Gaussian noise is almost independent of
the noise power.

Furthermore, the mean values of these Rk are inversely proportional to the k

values and can be fitted by a linear equation

Rnoise
k = 1.1 − 3.24k, (10)

where the standard error for the intersection is 0.4 and for the slope is 0.06. The
standard deviation of Rk values, however, is increased when k increases.

One can attribute this characteristic to the fact that the EMD is a dyadic filter
bank [Flandrin et al. (2004b)]. Based on the dyadic filter bank model, the definition
of Eq. (9) can be approximated by 10 log10(2−k/(1 − 2−k). When k is large, this
approximation will close to −3k. This also suggests that the linear equation of Rnoise

k

is independent of noise sources. The results, not shown here, using different white
noise generators confirm it. This linear relation indicates that the act of choosing
white Gaussian noise as the reference in both the entropic strategy and the WH
method is sufficient and appropriate to represent information-free distributions even
though the sources of white noise in data of interest are unknown.

Furthermore, we investigate the effects of information-rich IMFs on Rk dis-
tribution by considering the test signals Sraw(t) with different SNR values. The
results are shown in Fig. 7 with the hollow symbols representing the test signals
and the dark symbols representing noise. When the test signal is slightly distorted
by noise (SNR = 30dB), the Rk distribution completely differs from Eq. (10)
shown as the black line. The Rk distributions of the less contaminated test signals
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Fig. 7. The Rk distribution of data, which is contaminated by white Gaussian noise with five
different SNR denoted by hollow symbols. Dark symbols denoted the Rk distribution of noise.

are likely to agree with the distributions of noise when the k value is larger than
a certain value kt. Conversely, when noise severely contaminates the test signal
(SNR ≤ −10 dB), the Rk distributions almost agree with the distributions of pure
noise or the Eq. (10). The small standard deviations of Rk for small k suggest the
EMD almost obtains the same decomposition for each sample.

5.2. Sampling issue of the EMD

A proper sampling rate decides whether or not can we correctly investigate under-
lying functions from the sampled data. Furthermore, as addressed in Rilling and
Flandrin’s work [Rilling and Flandrin (2009)], because the EMD is designed for
continuous signals, the sampling issue in practically applying EMD on discrete sig-
nals is raised. They investigate the influence of the sampling on EMD and show
the existence of bounds on possible errors. It will lead to a quantitative approach
to obtain a principle of applying EMD properly.

Here, an alternative quantitative analysis to study the sampling issue in applying
EMD is presented. Specifically, the characteristic of IMFs of white noise, Eq. (10),
provides an EMD-based approach to determine the proper sampling rate. The
approach contains two steps. The first step systematically adjusts sampling rates
and the second step applies the entropic strategy on each sampled data and evalu-
ates the corresponding Rk distribution. The sampled data that has Rk distribution
close to Eq. (10) is likely to be information-free. Namely, the corresponding sam-
pling rate does not generate sufficient number of realizations.

As a demonstration, again, we consider the two test signals used in Sec. 4.2.
The first case, Sreal(t) = sin(2πfsit), has signal frequency fsi fixed to 2Hz and
SNR = 0 dB. The sampling rate fs is gradually decreased from 2,000 to 14Hz.
The Rk distributions for all cases are then plotted in panel (a) of Fig. 8. The
Rk distribution approaches the linear equation (10) of pure noise Rnoise

k , shown as
the dark line, when the sampling rate fs is about 125Hz. It leads to a high root
mean square (RMS) value of superposition of all information-rich components and
real signal (Panel (b)). This result suggests the EMD does not properly separate
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Fig. 8. Determination of minimum sampling rate for Sreal(t). Panel (a) shows the Rk distribution
of data with various ratios of sampling rate and signal frequency; Panel (b) shows RMS of smoothed
data and real signal vs. the frequency ratio.

signal and noise components. It is just the consequence of insufficient number of
realizations. Therefore, one can conclude that the minimum sampling rate for this
data is 125HZ.

Similarly, for the second test signal, S′
real(t) = 1000 ∗ exp(−t/1000)

sin(2πfsit) cos(2πf ′
sit), the signal frequencies fsi and f ′

si are 2 and 4 Hz, respectively
and the signal is also contaminated by white Gaussian noise with SNR = 0 dB. The
panel (a) of Fig. 9 plots the Rk distribution of data with sampling rates ranging
from 8000 to 800 Hz. The dark line shows the linear equation (10) of pure noise
Rnoise

k . The results show that when the sampling rate is lower than 1333Hz, the Rk

distribution of data is within the vicinity of the pure noise Rnoise
k distribution.

Namely, the minimum acceptable sampling rate for this signal is around 1333

Fig. 9. Determination of minimum sampling rate for S′
real(t). Panel (a) shows the Rk distribution

of data with different ratio of sampling rate and signal frequency and Panel (b) shows RMS of
smoothed data and real signal vs. the frequency ratio.
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Hz. The RMS values of superposition of all information-rich components obtained
using sampling rates larger than 1333Hz and real signal (panel (b)) are all larger
than 8.

5.3. The EMD-based low pass filter

There has been many studies, such as Flandrin et al. (2004a) and Khaldi et al.
(2008) proposed to apply EMD-based methods for denoising. Basically, both meth-
ods are developed still based on the energy of IMFs. As argued in Sec. 3, the
energy interpretation of IMFs may just spell out partial information of IMFs. One
can expect that the energy-based approach will face the same issue.

On the contrary, the entropic strategy provides an alternative as a low pass filter.
The EMD-based filtering method is straightforward. If the Nk(t), which contains
mostly high frequency IMFs, is identified as information-free components, the Sk(t)
that contains the rest of IMFs and residue will then be recognized as components
relevant to real signal. Instead of demonstrating this application by studying the
simple test signal used previously, we consider a contaminated male sound wave
signal. The results will be compared to three other filters, the WH, five-point mean
filter (MFS5), and wavelet denoise approaches.

A one-second long male voice signal with a weak background noise is recorded at
a sampling rate of 44.1 kHz, which will serve as the real signal S′

real(t). The waveform
of this voice signal is shown as the dark line in top row of Fig. 10. Then, this real
signal is linearly superimposed with a white Gaussian noise with SNR = 0 dB and
will be treated as raw data S′

raw(t), shown as a gray line in the same figure. The
goal is to remove high-frequency white noise from the raw data.

For the EMD-based low pass filter, the EMD is applied to decompose S′
raw(t),

which is shown in Fig. 10. There are nine IMFs and one residue. The Nk(t) and
the corresponding probability of Pinfo(k) containing information, Eq. (6), are then
calculated and shown in Fig. 11. When k is larger than 5 and Pinfo(k) is larger
than 0.67. N4(t) is an information-free dominant component. The smoothed signal,
superposition of rest of the IMFs, and residue are shown as light gray line in panel
(b) of Fig. 12. Notes that we present the one-second-long results in two columns;
left column, which records 0 to 0.5 second, contains mostly low-frequency parts
of signal and the right column, which records 0.5 to 1 second, contains mostly
high-frequency parts, to manifestly present performance of the results.

For the WH method, according to the energy distribution of IMFs as shown in
Fig. 13, it indicates the IMFs 5 to 8 are above the 99% percentile range of noise
energy spread function. Namely, these four IMFs contain information relevant to
the real signal with 99 confidence.

The smoothed signal (superposition of IMFs 5 to 8 and residue) is plotted in
Panel (c) of Fig. 12. The only difference between the proposed filter and the WH
method is that the ninth IMF is identified as a noise term by the WH method.
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Fig. 10. The IMFs of the contaminated male voice signal with SNR = 0 dB. The top row shows
the raw data. The dark line denotes the real signal S′

real(t) and the gray line plots the raw signal
S′

raw(t). The EMD results in nine IMFs and one residue.
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Fig. 11. The figure plots Nk(t) of the contaminate male voice signal. Furthermore, the corre-
sponding probabilities Pinfo(k), Eq. (6), are shown on the right of each row.
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Fig. 12. Demonstration of four filters. Panel (a) shows the clean male voice signal in dark line
and the noisy signal with SNR = 0dB shown in light gray line. Gray lines in Panels (b), (c),
(d), and (e) plot smoothed signals obtained from the entropic strategy, the WH method, the
MFS5, and the wavelet denoise method, respectively.

Fig. 13. The figure plots logarithm of energy density vs. mean period of each IMF (hollow square)
and energy spread function with 99% percentile of white Gaussian noise based on the WH method.
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Table 1. Comparisons of mean RMS and standard deviation of smoothed and real signal.

The smoothed signals are obtained from four filters.

SNR (dB) Entropic strategy WH MFS5 Wavelet

20 0.003 ± 0.001 0.003 ± 0.0003 0.004 ± 3.24e-5 0.026 ± 4.05e-5
10 0.004 ± 0.001 0.004 ± 0.0002 0.005 ± 9.44e-5 0.027 ± 0.0001
0 0.008 ± 0.002 0.009 ± 0.002 0.01 ± 0.0003 0.028 ± 0.0004

−10 0.03 ± 0.012 0.068 ± 0.001 0.031 ± 0.001 0.043 ± 0.001
−20 0.08 ± 0.066 0.215 ± 0.002 0.097 ± 0.002 0.11 ± 0.002

The smoothed results of using the MFS5 and wavelet denoise method are shown
in Panels (d) and (e), respectively. Note that the soft thresholding with a default
value 0.089 generated by the MATLAB tool (ddencmp, which is developed based
on Donoho et al. approaches [Donoho and Johnstone (1994, 1995); Donoho et al.
(1995)]) is used in the wavelet denoise method.

Although the figure shows these filters have similar performance in the high-
frequency part of the raw data (right column), one can still qualitatively identify
the proposed filter and the WH performs the best in this part and is followed by
the MFS5 and wavelet denoise method. The same trend is manifest for the low-
frequency part as shown in the left column.

Furthermore, 100 trials, which are contaminated by SNR = 20, 10, 0,−10,

and −20dB, are generated for investigating differences of these filters statisti-
cally. The mean RMS values and standard deviations of the smoothed signal
produced by the proposed method, WH, wavelet and MFS5, and real signal are
listed in Table 1. In general, the proposed filter outperforms the other three in
all five cases. Particularly, it performs the best in the data that is severely con-
taminated by noise. It is interesting to find that the simplest filter, the five-
point mean filter, only slightly outperformed by the proposed filter. Because
both the entropic strategy and the WH method show similar performances in
SNR = 20, 10, and 0 dB case, the energy interpretation is sufficient to quan-
tify the extent of information carried in IMFs. However, when the noise level is
increased (−10 and −20dB), it shows the consideration of the detailed information
in IMFs by the entropic strategy is crucial to quantify appropriately the extent of
information.

It seems the wavelet denoise method is the worst. However, it should be noted
that one always can design a better wavelet denoise filter with a more appropriate
soft threshold value based on properties of data rather than with the default value
used here [Kopsinis and McLauglin (2008a, 2008b); Boudraa and Cexus (2006)].
Because our purpose here is only to demonstrate a promising application of the
entropic strategy in filter design, we are not pursuing to develop a best filter. The
proposed approach sketches a general strategy for designing filters for different
purposes. It depends on the clustering method in the first step. Yet it is out of our
current scope.
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6. Conclusion

We discuss an adaptive signal analysis method, HHT, which has been shown a
promising tool to outperform Fourier transform-based analysis methods such as
wavelet approach in analyzing nonlinear and nonstationary signals. Particularly,
in this study, we focus on the first step of HHT, the empirical mode decompo-
sition. Because the EMD lacks analytical interpretation, we introduce a two-step
entropic strategy to investigate properties of IMFs. The entropic approach considers
a Bayesian interpretation of probability. Probabilities represent our state of knowl-
edge about the systems of interest. Thus, it brings directly an information-based
treatment to interpret IMFs. Furthermore, because the work of Xu et al. improves
performance of the EMD under low sampling rate [Xu et al. (2009)], we can expect
a wide applicability of the EMD based on the combination of their methodology
and the entropic strategy.

To demonstrate the use of entropic strategy, the properties of IMFs of two test
signals are numerically investigated. The extent of information in IMFs can be
quantitatively determined through the calculation relative entropy and probability
of Nk(t) containing information.

Three applications of the entropic strategy are demonstrated. First, a charac-
teristic of IMFs of white noise is revealed by the energy ratio of Nk(t) and Sk(t)
of white noise. The energy ratio is found to be inversely proportional to k value.
Second, one can utilize the Rk distribution to determine minimum sampling rate in
order to obtain sufficient number of realizations. The third application provides a
low pass filter design. As a demonstration, the proposed low pass filter is applied to
smooth a contaminated male sound wave signal and we compare it to three other
well-known filters. We show that the proposed filter is consistent with the WH
method for high SNR cases. It outperforms the WH method in the cases of signal
being severely contaminated. Furthermore, both the filters are competitive to the
mean filter and wavelet-based filter.

These results not only support the applicability of the WH method but also,
mostly, show that the detailed information carried in IMFs can be unveiled by the
entropic interpretation.
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