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Abstract

Drug repurposing has become an increasingly attractive approach to drug development owing to the ever-growing cost of
new drug discovery and frequent withdrawal of successful drugs caused by side effect issues. Here, we devised Functional
Module Connectivity Map (FMCM) for the discovery of repurposed drug compounds for systems treatment of complex
diseases, and applied it to colorectal adenocarcinoma. FMCM used multiple functional gene modules to query the
Connectivity Map (CMap). The functional modules were built around hub genes identified, through a gene selection by
trend-of-disease-progression (GSToP) procedure, from condition-specific gene-gene interaction networks constructed from
sets of cohort gene expression microarrays. The candidate drug compounds were restricted to drugs exhibiting predicted
minimal intracellular harmful side effects. We tested FMCM against the common practice of selecting drugs using a genomic
signature represented by a single set of individual genes to query CMap (IGCM), and found FMCM to have higher
robustness, accuracy, specificity, and reproducibility in identifying known anti-cancer agents. Among the 46 drug
candidates selected by FMCM for colorectal adenocarcinoma treatment, 65% had literature support for association with
anti-cancer activities, and 60% of the drugs predicted to have harmful effects on cancer had been reported to be associated
with carcinogens/immune suppressors. Compounds were formed from the selected drug candidates where in each
compound the component drugs collectively were beneficial to all the functional modules while no single component drug
was harmful to any of the modules. In cell viability tests, we identified four candidate drugs: GW-8510, etacrynic acid,
ginkgolide A, and 6-azathymine, as having high inhibitory activities against cancer cells. Through microarray experiments
we confirmed the novel functional links predicted for three candidate drugs: phenoxybenzamine (broad effects), GW-8510
(cell cycle), and imipenem (immune system). We believe FMCM can be usefully applied to repurposed drug discovery for
systems treatment of other types of cancer and other complex diseases.

Citation: Chung F-H, Chiang Y-R, Tseng A-L, Sung Y-C, Lu J, et al. (2014) Functional Module Connectivity Map (FMCM): A Framework for Searching Repurposed
Drug Compounds for Systems Treatment of Cancer and an Application to Colorectal Adenocarcinoma. PLoS ONE 9(1): €86299. doi:10.1371/journal.pone.0086299

Editor: Yu Xue, Huazhong University of Science and Technology, China
Received October 31, 2013; Accepted December 9, 2013; Published January 27, 2014

Copyright: © 2014 Chung et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is partially funded by grants from the Strive for the Top Project, Ministry of Education (grant no. 101G907-2), ROC, and the National Central
University-Cathay General Hospital United Research Center (101CGH-NCU-A5). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: fabian415@gmail.com (FHC); miniZma@gmail.com (NHM); hclee12345@gmail.com (HCL)

thought successful drugs, mostly through issues related to harmful
side effects [4—6]. Such issues may be a corollary of the prevailing
method for new drug discovery, which is to find specific
biomolecules as targets, typically membrane receptors [7].
However, a biological target may regulate more than one

Introduction

An important goal for biomedical research is to understand the
underling genetic mechanisms of human diseases and discover
therapeutic drugs for the diseases. Drug discovery is expensive; the

average research and development (R&D) cost in the past 15 years
for developing a new drug exceeds 1 billion US dollars [1]. Anti-
cancer agents are especially costly [2]. The standard R&D
procedure includes compound identification, toxicity tests in cell
and animal models, safety evaluation on early clinical trials, and
efficacy in late phase trials. The very high failure rate has led to a
crisis known as innovation gap in new drug discovery [3]. The
crisis 18 further compounded by the withdrawal of many previously
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biological pathway, only one of which may be disease related. If
this is the case, then altering the function of a biological target by a
drug can lead to unintended results of disruption of healthy
pathways [8].

The strategy of finding specific biological targets for drug
treatment may have also contributed to the disappointing progress
made in the last 40 years in reducing the overall mortality rates for
most types of cancer [9]. This is partly because cancer is a disease
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involving the dysfunction of multiple parallel pathways controlling
many fundamental processes [10]. Cancer cells accumulate
multiple genetic mutations that equip it with a of myriad of
survival and death-avoiding capabilities: for inducing angiogenesis;
to maintain proliferative signalling; to escape suicidal apoptotic
programs; for enabling replicative immortality; and to activate
mvasion and metastasis [11]. Evidences are emerging that the
pathology of cancer is more a consequence of small abnormalities
on many genes, than a major abnormality on a single gene
[12,13], and that drug compounds acting on multiple targets may
be a more effective treatment strategy than a single drug on a
single target [14]. In short, cancer is a systems disease and ought to
be dealt with by a systems treatment [13].

Here, we present a computational drug-screening procedure
that addresses the issues raised above. Our program has two main
aims: to surmount the innovation gap through drug repurposing,
and to find drug compounds for a systems treatment of cancer.
Drug repurposing is the search for novel indications for already
approved drugs [1,16]. Because an approved dug has already been
optimized for safety and efficacy for its originally designed
indication, its route for approval for a novel indication may be
significantly shorter and likely far less costly than that for a new
drug.

Recently the computational screening drugs for repurposing has
been greatly facilitated by the advent of the Connectivity Map
(CMap), a comprehensive and continuously updated database of
the genomic profiles of many existing drugs [17]. CMap provides a
platform for utilizing a pattern-matching strategy to determine the
similarity, or the opposite, in genomic signatures among diseases,
functional gene sets, and drugs. It has been employed in many
studies for discovering repurposing drugs against common
diseases, including diabetes and Alzheimer’s disease [17], and
for treating solid tumours, including those associated with colon
cancer [18], breast cancer [19], and lung adenocarcinoma [20].

The basic concept of CMap-based repurposing drugs discovery
studies is the identification of disease associated genomic signatures
that reversely correlate with perturbation in genomic signature
associated with the administration of molecules or drugs
[17,21,22]. In these studies, the essence of the protocol — the
individual-gene CMap approach (IGMP) — for identifying drugs
for treating a specific disease is straightforward: find a set of
differentially expression genes (DEGs) obtained by, say, comparing
two sets — controls and patients — of gene expression microarrays,
score the match between the DEG set and genomic profiles of
drugs given by CMap, and rank the drugs by score. Candidate
drugs are those with the highest scores. Because it draws on the
entire genomic information of the patients and of the drug, one
may view this approach as an attempt at systems treatment.
However, it suffers from being too crude an approach. In
particular it makes no specific reference to any of the many
altered states of biological functions associated with the disease. By
not paying attention to individual biological functions, a “best”
drug could very well be a compromise, chosen for having strong
beneficial effects on a subset of functions at the expense of being
harmful to some other functions.

Another study that utilizes variable gene signatures to screen
repurposed drugs has successfully identified many heterogeneous
Food and Drug Administration (FDA) approved drug candidates
for breast, myelogenous leukemia, and prostate cancer [23]. This
method typically yields a long list of heterogeneous drug
candidates without providing details that may help in differenti-
ating the drugs, details such as how a drug differently impact the
multi-functionalities of (a specific) cancer. Other more sophisti-
cated methods based on computational network models have been
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developed to identify novel therapeutic targets for the purpose of
treating regulatory cellular networks [24,25]. The effectiveness of
these approaches, which aim to elevate the relative activity of
certain cell regulatory networks, and base their predictions on
elaborate models optimally tuned to fit existing temporal and
spatial data, may be restricted by the limited existing knowledge
on networks and parameters describing protein activities.

Here, we present a novel analytical framework, called Func-
tional Module Connectivity Map (FMCM), for the discovery of
drug compounds for systems cancer treatment. We constructed
condition-specific function-function networks (FFNs) and applied a
gene-selection-by-trend-of-progression procedure (GSToP) [26] to
identify complexly connected and highly expressed hub genes in
the FFNs. We then used functional modules constructed around
the hub genes to query CMap for the discovery of ontology-
specific repurposing drugs, and further screened the drugs by
requiring that they exhibit minimum intracellular harmful side
effects. Relative to the standard IGCM protocol, FMCM was
more robust in its drug selection and it more consistently predicted
higher hit rates (~65%) on effective drugs against early
tumorigenesis in colorectal cancer. When checked against known
drug indications in Therapeutic Target Database (IT'TD), FMCM
showed significantly higher accuracy and lower false positive rates
on the discovery of the anti-cancer agents than IGCM, except for
the immune system. Our viability tests on eight of the candidate
drugs showed three, GW-8510, ginkgolide A, and 6-azathymine,
represented high inhibitory activities against the survival of cancer
cell lines with specific concentrations and administration dura-
tions. Follow-up microarray experiments confirmed that both the
CMap and our datasets showed consistent results on three
independent drugs — phenoxybenzamine (broad effects), GW-
8510 (cell cycle), and imipenem (immune system). These results
demonstrated the effectiveness of FMCM, and suggested its
potential for formulating repurposed drug regimes with minimum
harmful side effects in cancer patients.

Materials and Methods

Data sources

Gene expression data for 32 patients with sporadic colorectal
polyps (adenoma) and corresponding adjacent normal mucosa
from the same individuals were obtained from Gene Expression
Omnibus (GEO) database (accession number: GSE8671) [27]. We
extracted 30,047 protein entries and 39,194 protein-protein
interactions (PPIs) from the Human Protein Reference Database
(HPRD) [28] and used Gene Ontology (GO) [29] for functional

information.

External database

We used the Connectivity Map database (CMap) build 02 [17],
with 6,100 treatment expression profiles representing 1,309 drugs
(and compounds), to compute enrichment scores (ES) of gene set
against drugs.

For reference on drug indication we used LO1 class, antineo-
plastic agents, Anatomical Therapeutic Chemical (ATC) Classifi-
cation System, World Health Organization (WHO) (http://www.
whocc.no/).

We extracted information on known therapeutic protein targets,
relevant diseases or cancers, and corresponding drugs (787 drugs;
60% of CMap datasets) from the Therapeutic Target Database
(T'TD: http://bidd.nus.edu.sg/group/ttd/) [30]. In addition, we
queried key words on searching engines to define relative
therapeutic drugs on cancer treatment.
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We downloaded the annotated 4,884 gene-sets from the
Molecular ~ Signatures  Database  (MSigDB:  http://www.
broadinstitute.org/gsea/msigdb/index jsp) [31]. The gene-sets
are of four types: C2: curated gene-sets from known pathways,
online databases, and knowledge of domain experts; C3: motif
gene-sets based on conservative cis-regulatory motifs from human,
mouse, rat, and dog genomes; C4: computational gene-sets
determined by co-expression neighbourhoods centered on 380
cancer-related genes; C5: gene-ontology gene-sets collected from
the same GO annotations of genes. Gene symbols in each gene-set
were combined and converted into HG-U133A Affymetrix ID
according to the updated annotation file at the website http://
www.affymetrix.com/estore/.

Gene selection by individual gene analysis (IGA) and
Individual gene connectivity map (IGCM)

Differentially expressed genes (DEGs) were selected using the
Significance Analysis of Microarrays algorithm (SAM) [32]. Unless
otherwise stated, threshold values for false discovery rate (FDR)
<<0.05 and fold change (FC) >2 were used. Enrichment score (ES)
matching gene set to drug was computed through CMap [17].

Beneficial and harmful drugs

Given a gene set, a drug was designated beneficial or harmful if
the ES is <—0.5 or >0.3. For drugs to be designated beneficial a
randomization p-value<<0.005 was required, unless otherwise
stated.

Construction of gene-gene interaction network (GGIN)
and function-function interaction network (FFN)

For a given condition — control (Nor) or adenoma patient (Ade)
— and a Pearson p-value (see below) threshold pgy, we included a
pair of genes in the GGIN if: (1) the p-value for the pair was not
greater than pp; (2) the protein pair encoded by the gene pair was
linked in the PPI data. For a given set of n microarrays, a Pearson’s
correlation coefficient (PCC) between a pair of genes was
calculated using the two sets of n intensities of the pair. Each
PPC is assigned a Pearson p-value based on permutation tests and
t-statistics. Genes in each type-specific GGIN were assigned to
over-represented biological functions, called functional modules,
through Gene Ontology term association [29]. Enrichment
analyses based on conditional hypergeometric test [33] were
made using the R package GOstats downloaded from the
Bioconductor website. Each GGIN was reduced to function-
function network (FFN) using functional modules as nodes.

GSToP and the functional module connectivity map
(FMCM) framework

The FMCM framework for selecting therapeutic drug com-
pound consisted of two segments, selection of functional modules
of predicted cancer genes based on the GSToP procedure [26]
(steps 1-5 below), and multiple queries, one for each functional
module, of the CMap for drug identification (steps 6-8). Steps in
the selection procedure (Figure 1) were: (1) Construct Nor and Ade
GGINs and FFNs using threshold Pearson p-value =0.001. (2)
SAM. Identify DEGs for Ade vs. Nor using thresholds FDR <0.01
and FC >2. (3) GSToP. Assign a gene as a cancer gene if: (a) it
appears in at least the Ade or Nor GGIN; (b) its degrees and
clustering coeflicients increase (decrease) along the sequence. (4)
Take overlap of SAM and GSToP lists. (5) Cancer genes
(including up-regulated and down-regulated genes) form function-
al modules having GO terms used for the FFNs. (6) Beneficial and
harmful drug lists. Use functional modules separately to query
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drugs in the CMap [17] to obtain for each function two lists
respectively for predicted beneficial (ES <—0.5) and harmful (ES
>0.3) drugs (see above for requirement on randomization p-value).
(7) Function-drug association map (FDAM). Use the drug lists to
construct a map with two kinds of nodes, function module and
drug, and two kinds of function-drug links, beneficial and harmful.
Include in FDAM only drugs that have at least one beneficial link.
(8) Construct from FDAM all predicted drug compounds, where a
compound is minimum set of purely beneficial drugs that covered
all functions.

Accuracy, specificity, and reproducibility in performance
tests

Positives NB and negatives NA were drugs predicted to be
beneficial and harmful, respectively; true positives TP and false
negatives N were known anti-tumor agents predicted to be
beneficial and harmful, respectively; true negatives is TN = NA—
FN, and false positive is FP=NB-TP. Accuracy was defined as
(TP+TN)/(NB+NA), and specificity as TN/(FP+TN).

For reproducibility a drug prediction procedure (FMCM or
IGCM) was repeated 10 times, each time working on a set of 40
randomly chosen microarrays, 20 each from controls and patients,
and reproducibility was measured over the 10x9/2 =45 pairs of
results. For each pair reproducibility was (the size of) the
intersection of the two sets of selected drugs divided by the
geometric mean of the two sets.

Cell cultures and reagents

Human colon cancer cell lines (HC'T116, RKO, SW403, and
SW620), and breast cancer cell lines (MCF7) were obtained from
ATCC (American Type Culture Collection, Manassas, VA) and
maintained as suggested by ATCC. The growth media for all cell
lines were supplemented with 10% fetal bovine serum (FBS), 50
units/ml of penicillin and streptomycin, and incubated at 37°C
with 5% carbon dioxide. In experiments, cells were treated with
ethanol, water or DMSO as corresponding vehicle control.
Phenoxybenzamine, GW-8510, ectacrynic acid, ginkgolide A,
triflusal, imipenem, 6-azathymine were purchased from Santa
cruz (CA). Phthalylsulfathiazole was purchased from Sigma (St.
Louis, MO). Phenoxybenzamine, phthalylsulfathiazole, etacrynic
acid, ginkgolide were dissolved in ethanol. Imipenem was dissolved
in water. The remaining drugs were dissolved in Dimethyl
sulfoxide (DMSO).

Cell Proliferation assay

Proliferation activities of five cell lines — colon cancer, HC'T116,
RKO, SW403, and SW620, and breast cancer, MCF7 — were
monitored by Alamar Blue (Molecular Probes, Invitrogen Corpo-
ration), an oxidation-reduction reagent, and determined by
measuring the reduction of resazurin (blue, non-fluorescent) to
resorufin (red, highly fluorescent). Cells were seeded in 96-well
cultured plates and, following the study design of the CMap [17],
treated with single drugs with concentration of 0, 0.1, 1,10, 30 uM
for 5 days, then assayed for proliferation activities. One-tenth
volume of alamar blue reagent was added and plates were
incubated at 37°C for 2—3 hours. Cell viability was determined by
measuring fluorescence with excitation at 550 nm and emission at
590 nm on Synergy HT' (BioTek Instruments, Winooski, V'T). Cell
survival was calculated as relative value of the difference between
the reductions of Alamar Blue in treated versus controls.
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Figure 1. Flowchart of methodology.
doi:10.1371/journal.pone.0086299.g001

RNA extraction and microarrays

Cells were seeded in 100 mm dishes and treated with drugs.
After drug treatment for 6 hours, total cellular RNA was isolated
using mirVana miRNA Isolation Kit (Ambion, Austin, TX)
according to the manufacturer’s instructions. 250 ng of total RNA
was used for microarray experiments. Extracted RNA was labelled
with GeneChip® 3’ IVT Express Kit (Affymetrix, Santa Clara,
CA, USA) and hybridized onto Affymetrix GeneChip® Prime
View Human Gene Expression Array. This array contained
approximately 530,000 probes covering more than 36,000
transcripts and variants. Raw images were analysed by Affymetrix
GeneChip® Operating Software. We performed microarray
analysis of the effect of imipenem and phenoxybenzamine (PB)
(treated and non-treated) on HCT116 and MCF7, and GW-8510
on HCTI116 under the U219 (primeview) platform, all in
duplicates. Treatment dosages and duration times were the same
as in [17].

Microarray experiments and analysis by IGA and gene-set
approach (GSA)

Genome-wide gene expression profiles from drug-perturbed
tumour cells evaluated by the Affymetrix GeneChip® Prime View
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platform were analyzed in R environment (version 2.15.1). Two
cell lines, HCT116 and MCF7, were treated with three drugs,
GW-8510, phenoxybenzamine (PB), and imipenem, with the same
dosages (10 uM, 11.8 uM, 13.4 uM, respectively) and time
(6 hours after overnight culture) as in [17]. The microarray
profiles were compared with ten profiles from the CMap for
MCF7 treated with the three drugs. Gene expression intensities
were normalized by Robust Multi-array Average (RMA) [34]. In
the IGA approach DEGs were identified by one-way ANOVA
using the eBayes function in the limma package [35]. In a gene-set
approach (GSA), given a list of ranked differential gene
expressions, we used GSEA [31] to convert the 4,884 annotated
gene sets in MSigDB [31] to a list of 4,884 ranked ESs, then
applied one-way ANOVA to find differential gene sets. In IGA (or
GSA) a gene (or a gene-set) with false discovery rate (FDR) less
than 0.01 was considered significant and selected for two-way
hierarchical clustering of the microarray set. GO terms for
overrepresented gene (or gene-set) clusters in the IGA (or GSA)
heatmap were determined using DAVID [36].
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Results

Function-function networks

High quality of microarray data was indicated by the clean
separation of control (from 32 normal tissues) and sample (32
patients) in Principle Component Analysis (Figure S1A). The
2,164 DEGs selected by SAM (with thresholds FDR <0.01 and
FC >2) correctly classified the controls and sample in hierarchical
clustering (Figure S1B). Clustering results were not sensitive to
moderate variations in threshold values (not shown). Gene-gene
mteraction networks (GGINs) were constructed with a threshold of
Pearson p<<0.001 from the control and adenoma cohort micro-
array data (Figure S2). The adenoma GGIN has 6.4% more genes
(1,792 vs. 1,684) and 32% more links (2,656 vs. 2,017) than the
control GGIN. The difference between the two cases became
evident when the GGINs were reduced to function-function
networks (FFNs) having functional modules as nodes (Figure 2,
Table SI1). Cell cycle, DNA replication, and DNA repair
functional modules were much larger in the adenoma FFN and
exhibited much high levels of intra-function activity. There were
also more inter-module activities in adenoma than in control. In a
noted exception, the inter-module activity between immune
system process and cell proliferation was weaker in adenoma than
in control.

Repurposed therapeutic drugs selected by IGCM
CMap gives enrichment scores (ES) to gene lists not longer than
1,000 entries. We complied with this constraint (i.e., restricting the

Functional Module Connectivity Map

size of the DEGs) by requiring FDR <0.01. Five DEG lists with
FC thresholds of 3.0 to 5.0 with 0.5 intervals were generated and
their ES’s for the 1,308 drugs (or small compounds) were obtained
by querying CMap. The list of beneficial (i.e., anti-adenoma) drugs
was sensitive to (the threshold value of) FC, with the size of the list
decreasing with increasing FC (Figure 3A). The number of
beneficial validated drugs decreased with increasing FC (Figure
S3). According to TTD, many known therapeutic anti-cancer
drugs, such as chrysin (pink, TTD id: DNC004715), GW-8510
(red, TTD id: DNCO004631), daunorubicin (cyan, TTD id:
DAP000788), apigenin (light purple, TTD id: DNCO004714),
resveratrol (yellow green, T'TD id: DNC001205), coincidentally all
changed from beneficial at FC=3 to harmful at FC=3.5
(Figure 3A). At FC=5.0, the most stringent threshold that we
used mostly, AG-012559 was the only beneficial drug under
permutation p<<0.005 (Figure S3).

Repurposed therapeutic drugs selected by FMCM

In the FMCM program, genes selected in each functional
module (Table S2) were used separately to query CMap, yielding
separate functional specific drug lists. Each functional module was
the union of the control and adenoma functional modules given by
the respective FFNs, filtered by the GSToP procedure (see
Methods). In FMCM the gene size of the module had a much
stronger dependence on the value of FC than IGCM (Figure 3). In
IGCM, size of DEG dropped from just above 600 to 200 when the
value of FC threshold was raised from 3 to 5. In FMCM module
gene size dropped from about 600 to about 30 as (the threshold)

Figure 2. Function-function networks for colorectal adenoma. Condition specific function-function networks (FFNs) were generated from
gene-gene networks (GGINs), shown in Figure S2, by reduction. Nodes in an FFN are functional modules (FMs), which are gene sets in the
corresponding GGIN forming over-represented Gene Ontology terms. FMs containing less than 70 genes are not shown. The diameter of a node
scales with the logarithm of the number of genes in the node. The color shade of a node indicates the number of intra-node gene-gene interactions
per gene. The thickness of the edge indicates the number of inter-node gene-gene interactions.

doi:10.1371/journal.pone.0086299.9002
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Figure 3. Enrichment score versus fold-change for CMap drugs. Enrichment score (ES) was obtained by querying the CMap with gene set
(size indicated by vertical bar) determined using varying fold-change (FC) threshold. A drug is considered beneficial for the treatment for colorectal
adenoma if ES <—0.5, harmful if ES >0.3, and neutral otherwise. (A) Screening by IGCM procedure. Querying gene set was complete set of
differentially expressed genes (DEGs) identified from gene expression arrays of colorectal adenoma cohort (versus control) using the SAM algorithm
with fixed FDR <0.01. (B) Screening by FMCM procedure. Querying gene sets were functional modules obtained by partition of over-represented
Gene Ontology terms in GSToP filtered DEGs.

doi:10.1371/journal.pone.0086299.g003

FC was raised from 1 to 3, and became too small for CMap in FMCM the character of selected drugs (i.e., beneficial or
application when FC was raised above 3. Even so, within the harmful) changed very little (21 out of 256, Figure 3B) while in
respective range of FC used, FMCM provided a much more stable IGCM changed occurred to 54.5% of selected drugs (12 out of 22,
and robust environment for drug screening by CMap than IGCM; Figure 3A).
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Function-drug association map (FDAM) and therapeutic
drug compounds

Purely beneficial and harmful drugs (see Material and Methods)
that were beneficial to at least one FM were identified in the
FMCM program (FC >2) and used to construct FDAM. The 46
drugs in the FDAM (Table 1) were much more numerous than the
corresponding list found in traditional IGCM approach (which
had 22 drugs). Thirty of the 46, or 65%, have either been studied
individually as anti-tumour agents or have been certified to have
preventive effects against a broad range of cancers (Table 1 and
Table S3). The five drugs, thapsigargin, pyrvinium, trifluopera-
zine, ellipticine, and 0297417-0002B, which in our FDAM were
harmful to at least one module, have been reported to show
evidence for carcinogenesis/immune suppression —activities
(Figure 4, Table 1 and Table S3). We view the 41 drugs on the
FDAM with no harmful links as candidate therapeutic drugs. The
number of modules, or degrees (Table 1), to which a candidate
drug was beneficial varied from 1 to 7. There were two degree-7
drugs, phenoxybenzamine and GW-8510, and three degree-5
drugs, thapsigargin, phthalylsulfathiazole, and medrysone (see
Table 1 for full details on degrees and drug-module relation). A
therapeutic drug compound is a minimum set of drugs culled from
the list of candidate therapeutic drugs that covered all the
modules. Many compounds could be constructed from the
candidate drug list. There were two 2-compnent compounds,
phenoxybenzamine+ISP and GW-8510+ISP, and 20 compounds
with up to six drug components (Table 2). Barring drug-drug
interaction, we predict these compounds to be free of harmful side
effects at the intracellular level.

Comparison between IGCM and FMCM

Stability. As mentioned earlier, the characterization of a
drug, namely beneficial or harmful, was much more stable FMCM
than in IGCM (Figure 3).

Accuracy and specificity. We used anti-tumor agents in the
Therapeutic Target Database (T'TD) to evaluate the accuracy and
specificity (Material and Methods) of the FMCM and IGCM
predictions. The “true” drug set in the test was the intersection of
TTD and the CMap list, which included about 40% of TTD. For
simplicity, we denote by IG3 the IGCM query at FC =3 and the
rest (queries with FC >3) by IGL. We found that FMCM had
overall accuracy (Figure 5A) and specificity (Figure S4) similar to
1G3 and higher than IGL, except for the immune system process
module, where FMCM was worse than IGL.

Reproducibility. We tested the reproducibility (Material and
Methods) of the drug predictions by repeating 10 times the
FMCM and IGCM procedures, each time working on a set of 40
randomly chosen microarrays, 20 each from controls and patients.
In the FMCM procedure, GGINs were constructed using DEGs
selected by SAM at FDR <0.01 and FC >2, and the selected drug
set was the sum of beneficial and harmful drugs. FMCM had
significantly higher reproducibility (on average ~80%) than
IGCM (on average ~50%), except for the module immune
system process (on average ~60%) (Figure 5B, two-sample #test
p<10719).

Clinical application I. We took four known anti-cancer
drugs, irinotecan (no. 29 in Table 1), thapsigargin (no. 3), 8-
azaguanine (no. 15), and vorinostat (no. 18) as examples for
comparison (Figure 6). The first drug, irinotecan (trade mark
Camptosar), is in current use, in particular in combination with
other chemotherapy agents such as 5-fluorouracil and leucovorin
in a common colorectal cancer regimen called FOLFIRI [37], was
significantly beneficial only to the apoptosis module by FMCM
(Figure 6A). Thapsigargin, a known endoplasmic reticulum Ca2+
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ATPase inhibitor [38], was both significantly beneficial and
harmful to colorectal cancer in FMCM (apoptosis and RNA
metabolic process, respectively, Figure 6B), but was neutral
IGCM. The third example, 8-azaguanine, a purine analog that
exhibits anti-neoplastic activity and have been used in the
treatment of acute leukemia [39], was significantly beneficial to
the apoptosis and cell proliferation modules in FMCM, but was
harmful (not significantly) in all IGCM tests (Figure 6C).
Vorinostat (trade mark Zolinza), a member of a larger class of
compounds that inhibit histone deacetylases (HDAC:s), and known
to arrest cancer cells epigenetically, was significantly and broadly
beneficial in both IGCM (FC from 3 to 4.5) and FMCM (cell
proliferation, signal transduction, and transcription) and showed
no harmful effects (Figure 6D). These results suggested that
FMCM have higher resolution to detect known ant-cancer agents
than IGCM.

Clinical application II. Using the IGCM and FMCM gene
lists we examined the ES versus FC patterns of 27 chemo-drugs,
not necessarily specific to colon cancer treatment, listed in the
Anatomical Therapeutic Chemical (ATC) classification system
(LO1 class; anti-neoplastic agents), and partitioned the group by
pattern into six types (Figure SSA-F). An overall characterization
of our results was that IGL, which represent queries using more
stringently selected DEGs, on the one hand and IG3/FMCM on
the other tended to give contrast indications to many of the anti-
neoplastic agents. In Figure S5A, to which the drug irinotecan
belongs, drugs were mostly harmful in the IGL queries but were
beneficial in the IG3 and most of the FMCM queries. In Figure
S5B, the IGL queries were mostly beneficial and the IG3/FMCM
mostly harmful. In Figure S5C and S5D, all IGCM queries (IGL
and IG3, with one exception) were beneficial while the FMCM
queries had significant harmful components. The most beneficial
drug was vorinostat, the single entry in Figure S5E, where all
queries were beneficial. The most harmful drugs were the all-
harmful celecoxib and paclitaxel, with carmustine and imatinib
close behind (Figure S5F). Vorinostat, doxorubicin, daunorubicin,
irinotecan — all in Figure S5A — satisfied our stringent criteria for
inclusion in Table 1 as components for therapeutic drug
compounds.

Cell viability on single predicted drugs

Eight beneficial drugs from Table 1, phenoxybenzamine (PB;
beneficial to 7 functional modules), GW-8510 (GW; 7), phthalyl-
sulfathiazole (PS; 5), etacrynic acid (EA; 2), ginkgolide A (GA; 1),
triflusal (TF; 1), imipenem (IM; 1), and 6-azathymine (6-AT; 1),
were selected for their commercial availability and degree of
beneficence for preliminary cell model experimental validation on
five cell lines: colon cancer, HC'T116, RKO, SW403, and SW620,
and breast cancer, MCF7. GW had the strongest effect on the cell
lines and MCF7 was the cell line most susceptible to the tested
drugs (Figure 7). GW, EA, GA, and 6-AT could selectively or
broadly inhibit cell viability on the cell lines. GW, a known CDK?2
inhibitor used in protection of hair-loss in chemotherapy,
exhibited strong inhibitions against HC'T116 and MCIF7, moder-
ate effects against RKO and SW620, and weak effects against
SW602. EA, GA, and 6-AT moderately to weakly inhibited the
viability of MCF7 (Table 3).

Microarray results and test of the perturbagen concept
We tested the implicit perturbagen assumption [17] that CMap
data on gene expression profiles from drug treatments on one cell
line (MCF7) are useful for drawing inferences more generally on
the effects of the drug, in particular, its effect on different cell lines.
We generated five microarray global gene expression profiles, of
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Figure 4. Function-drug association map (FDAM) for colorectal adenoma. Nodes in the map are functional modules (FMs; gene sets) and
drugs obtained by querying CMap using individual FMs. Drug-function links indicate beneficial (green) or harmful (red). Only drugs beneficial to at

least one FM are included.
doi:10.1371/journal.pone.0086299.9004

PB and IM on HCT116 and MCF7, and of GW on HCT116 (the
efficacy of GW on MCF7 is similar). As control we extracted from
the CMap database 10 corresponding datasets of the three drugs
on MCF7 (4, 4, and 2 datasets from PB, GW, and IM,
respectively). We carried out separate two-way hierarchical
clustering of the 15 profiles employing the IGA and GSA
procedures. In spite of different cell lines, microarray platforms,
and laboratory conditions, the samples, especially the five GW
administered samples, clustered more according to drugs than not
in both procedures (Figure 8). The outstanding qualitative
difference between the IGA and GSA procedures was that the
IGA heatmap was dominated by a single GO term, cell cycle
(Figure 8A, Table S4, S5, S6), whereas the GSA heatmap was
characterized by four terms: monosaccharide metabolic process,
response to hormone stimulus, inflammatory response, and cell
cycle phases (Figure 8B, Table S7, S8, S9, S10). The IGA heatmap
corroborates the result mentioned earlier, that GW, alone among
all the drugs, had high negative impact on cell survival. The GSA
heatmap allowed the effects of smaller gene sets to be displayed
and had a closer correspondence to our FMCM approach to drug
selection. For example, it provided an independent support that
IM, but not the other drugs tested, exhibited a strong beneficial
effect on the immune system process in colorectal cancer cells

(Table 1).

PLOS ONE | www.plosone.org
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Discussion

CMap has been widely applied to drug discovery for treatment
of complex diseases, including cancer. Methodologies employed
for applying CMap for this purpose are simply variations of a [17].
The important differences between the FMCM procedure used
here and IGCM include: (i) In addition to differential expression,
genes selected from querying CMap were screened by the GSToP
procedure making use of GGINs [26]; (i1) functional modules
(FMs) were built from selected genes and used for separate
querying of CMap to select function specific beneficial drugs
(Table 1); (iii) querying results were used to form drug compounds,
each compound being a minimum set of drugs that collectively
were beneficial to all the FMs and not harmful to any FM
(Table 2).

Our tests showed FMCM to perform better than IGCM in
terms of prediction stability (Figure 3), accuracy (Figure 5A),
specificity (Figure S4), and reproducibility (Figure 5B). In short,
FMCM was much more robust than IGCM in drugs selected. One
reason for the relative robustness of FMCM prediction over
IGCM may be that most modern drugs were designed to affect a
specific biological function, say, by targeting a transcription factor,
not to affect all functions. An FM-drug association is therefore
expected to be more stable than that between the whole DEG set
and the drug.

January 2014 | Volume 9 | Issue 1 | 86299
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Because IGCM does not test drugs for function specific
harmfulness, drugs selected by IGCM may be deemed overall
beneficial yet still harmful to some functions, or vice versa. This
was the case for three well-known drugs used in the cancer
chemotherapy listed in the CMap database: thapsigargin, 8-
azaguanine, and irinotecan (Figure 6).

Drugs selected by FMCM had high sensitivity and low false-
positive rate. Of the total 46 candidate drugs (Table 1), 41 were
entirely beneficial and five were harmful to some FMs. Thirty of
46 drugs have been reported in the literature to have properties
related to cancer. Of the 41 putative entirely beneficial drugs, 25
have been reported to have anticancer properties and one has
been reported to be carcinogenic (or mutagenic). Of the five
putative partly harmful drugs, four have been reported to be both
anticancer and carcinogenic.

Phenoxybenzamine, an o-adrenergic-antagonist, was our only
false-positive case. We identified it as a degree-7 beneficial drug,
but there has been no literature suggesting its anti-tumorigenicity.
Instead, there are two clinical studies suggesting possible
carcinogenic effects in patients [40,41].

A novel feature of the FMCM approach was its ability to
discover intracellular harmful side effect in agents known to be
anti-cancer. This is not surprising given the widespread practice of
targeting specific biomolecule in drug designs when it is now
known that the typical regulatory relation between transcription
factors and biological networks is many-to-many. We identified
pyrvinium, trifluoperazine, ellipticine, and 0297417-0002B to be

PLOS ONE | www.plosone.org
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Table 2. Predicted drug compounds for colorectal cancer adenoma.

Code No. of components Compound Ratio of degrees

1 2 phenoxybenzamine + ISP 71

2 2 GW-8510 + ISP 7:1

3 3% phthalylsulfathiazole + etacrynic acid + ST 5:2:1

4 4 daunorubicin + TDNA + APO + ISP 4:2:1:1

5 4 apigenin + etacrynic acid + ST + ISP 4:2:1:1

6 4 apigenin + alsterpaullone + CC + ISP 4:2:1:1

7 5 camptothecin + ifenprodil + DR + CC + ISP

8 5 vorinostat + etacrynic acid + TDNA + RM + ISP

9 6 ifenprodil + 8-azaguanine + DR + CC + ST + ISP 2:2:1:1:1:1

10 6 ifenprodil + etacrynic acid + DR + CP + CC + ISP 2:2:1:1:1:1

1 6 ifenprodil + alsterpaullone + DR + CP + ST + ISP 2:2:1:1:1:1

12 6 TDNA + 8-azaguanine + RM + CC + ST + ISP

13 6 TDNA + etacrynic acid + RM + CP + ST + ISP 2:2:1:1:1:1

14 6 TDNA + alsterpaullone + RM + CC + CP + ISP 2:2:1:1:1:1

15 6 TDNA + vorinostat + RM + CP + APO + ISP 2:2:1:1:1:1

16 6 vorinostat + etacrynic acid + DR + TR + RM + ISP 2:2:1:1:11

17 6 vorinostat + ifenprodil + DR + CC + APO + ISP 2:2:1:1:1:1

18 6 ifenprodil + 8-azaguanine + DR + CC + ST+ ISP 2:2:1:1:1:1

19 6 ifenprodil + alsterpaullone + DR + CC + CP+ ISP 2:2:1:1:1:1

20 6 ifenprodil + etacrynic acid + DR + CP + ST+ ISP 2:2:1:1:1

The eight GO terms (biological function classifications) included are APO, CC, CP, ST, TR, DR, CP, RM and ISP (see abbreviations below). All drugs in the table have ES
(enrichment score) <—0.75 (with only one exception). None of the drugs have harmful effects (ES >0) on any of the GO functions. Only compounds with up to 6
components are given. Abbreviations: ISP: immune system process - trifusal or morantel or gingolide or cetirizine or imipenem; APO: apoptosis - irinotecan or
doxazosin or cycloserine or repaglinide; CC: cell cycle - doxorubicin or withaferin A; ST: signal transduction - 6-azathymine or tyloxapol; TR: transcription - sanguinarine;
DR: DNA replication - piperlongumine; CP: Cell proliferation — bepridil; RM: RNA metabolic process — skimmianine; TDNA: transcription and DNA replication —chrysin or
thioguanosine or luteolin or thiostrepton or sulconazole. The “degrees” in “Ratio of degrees” indicate the number of functional modules to which the corresponding
component is beneficial.

doi:10.1371/journal.pone.0086299.t002

harmful to immune system process but otherwise beneficial. The
first three — there is no literature on 0297417-0002B — has been
reported to have anti-tumor properties but also have lethal effects
in cell or animal models (Table 1). We identified thapsigargin to be
beneficial to the apoptosis FM but broadly harmful to the signal
transduction, transcription, cell proliferation, and RNA metabolic
process FMs. This drug has been reported to have the ability to
promote apoptosis on prostate and breast cancer cells but also to
stimulate cell growth in mouse keratinocyte models (Table 1) [42—
47].

Based on our i silico screening and cell viability experiments, we
selected the four drugs, GW-8510 (GW, no. 2 in Table 1),
etacrynic acid (EA, no. 16), ginkgolide A (GA, no. 39), and 6-
azathymine (6-AT, no. 44), as potential therapeutic agents for
colorectal adenoma. GW, which exhibited clear inhibitory effects
against colon cell growth (Figure 7) in our viability experiments, is
a cyclin-dependent kinase 2 (CDKZ2) inhibitor used for preventing
hair loss in chemotherapy. It was suggested that the observed
antitumor efficacy of GW’s derives from its inhibition of tumor
growth via cell cycle control [48], a suggestion supported by our in
sthico study. EA is a potent inhibitor of glutathione S-transferase
(GST) family members and has been used to treat high blood
pressure and swelling caused by kidney failure. It has been
suggested that EA may inhibit cell growth and induce cancer cell
death through apoptosis [49-51], a notion that correlated well
with our findings (Figure 4). In our analysis the ES’s for EA were
—0.891 and —0.875 versus the apoptosis and cell cycle modules,

January 2014 | Volume 9 | Issue 1 | 86299
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Figure 5. Accuracy and reproducibility in drug prediction. (A) Accuracy is the sum of true positive (predicted beneficial and known anti-tumor
agent) and true negative (predicted harmful and known cancer-inducing agent) over sum of predicted beneficial and harmful drugs. IGCM results are
in black, and FMCM, in red and cyan. Specificity is given in Figure S5. (B) Reproducibility is the measure of agreement between the selected drugs in
two runs using different subsets of microarray data (Materials and Methods). Results shown are averaged over 45 pair-wise comparisons of selected
drugs. The five towers on the left are IGCM results for given threshold FC value. The eight towers on the right are FMCM results (FC >2) for the 8
functional modules. Size of querying gene set is given by line in red.

doi:10.1371/journal.pone.0086299.9g005
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Figure 6. Enrichment scores of known anti-cancer drugs. (A) irinotecan, (B) thapsigargin, (C) 8-azaguanine, and (D) vorinostat. CMap querying
gene sets are shown on the horizontal axis. The first five entries from left are whole DEG sets selected by SAM using FDR=0.01 and FC ranging from
3.0 to 5.0. The rest are the eight functional module selected by GSToP with FC=2.0. Star indicates permutation p-value<0.005.

doi:10.1371/journal.pone.0086299.g006

respectively (Table 1). EA has also been reported to have
therapeutic potential in cancer therapy by reversing drug
resistance [52-54]. GA, a Ginkgo biloba leaf extract, has been used
for treatment in a wide variety of cognitive and vascular disorders,
including dementia and peripheral arterial occlusive diseases [55—
57]. Its structural homolog Ginkgolide B has been reported to
possess anti-inflammatory anti-allergic, anti-oxidant, anti-cancer,
and neuroprotective effects [58]. In our analysis GA had
ES=—0.834 against the immune system process module
(Table 1). Recent studies conducted with various molecular,
cellular, and animal model experiments have concluded that
Ginkgolide B may have chemopreventive abilities associated with
anti-angiogenic, antioxidant, and gene-regulatory events [59-62].
6-AT, an analog of thymine, has been shown to inhibit the
pathway of biosynthesis of nuclear acids in cancer tissues [63,64].
It had ES=—0.813 against the signal transduction module

PLOS ONE | www.plosone.org
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(Table 1) and inhibited tumor growth in the cell line MCF?7
(Figure 7). Our study showed that the pair GW and GA combined
would yield beneficial effects on all eight FMs (Table 2).

We were not able to find another gene expression microarray
set on colon adenoma that passed our quality test (Principal
Component Analysis, Figure S1). We did find a dataset on
colorectal cancer (CRC) that did, from GEO database (accession
number: GSE32323). The dataset, Affymetrix HG-U133 plus 2.0
arrays, contained 17 pairs of cancer and healthy colon tissues from
CRC patients [65]. We subjected the set to the same IGCM and
FMCM analyses as we did the adenoma data. For the predicted
repurposed candidate drugs, FMCM performed better than
IGCM in stability and reproducibility, and was comparable with
IGCM in accuracy and specificity. Through FMCM we selected
43 candidate drugs for CRC. Among this drug set, 20 also
belonged to the set of 46 drugs for adenoma (Figure 9). This
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Figure 7. Viability test of colon and breast cancer cells treated with single drug. Tests were conducted on eight drugs: phenoxybenzamine
(PB), GW-8510, phthalylsulfathiazole (PS), etacrynic acid (EA), ginkgolide A (GA), triflusal (TF), imipenem (IM), and 6-azathymine (6-AT), with
concentrations of 0, 0.1, 1, 10, and 30 uM. (A) Viability of MCF7 on treatment of the eight drugs. (B) Viability of five cell lines on treatment of GW-8510.
Colon cancer cells HCT116, RKO, SW403 and SW620, and the breast cancer cell MCF7, were treated with single drug for 5 days. After 5 days,
proliferation activities of these cells were detected by Alamar Blue assay.

doi:10.1371/journal.pone.0086299.g007

overlap set of 20 drugs included 9 of the 13 adenoma drugs with
degrees equal to or greater than 3 (Table 1). Given that IGCM-
based drug screening for disease specific but different data sets is
known to lead to drug sets that are highly variable, and that colon
adenoma and CRC are related but not the same conditions, the
degrees of overlap between the colon adenoma and CRC drug sets
are encouraging. The overlap set contained 5 of the 8 adenoma

Table 3. Inhibitory effects of single predicted drugs on colon
cancer and breast cancer cell lines.

Half maximal inhibitory concentration (IC50) (M)

Drugs HCT116 RKO SW403 SW620 MCF7
phenoxybenzamine - - - - -
GW-8510 0.7 33 >30 84 0.8
phthalylsulfathiazole - - - - -
etacrynic acid - - - - 6.80
ginkgolide A - - - - 225
triflusal - - - - -
imipenem - - - - -
6-azathymine - - - - 7.9

-: not detected from 0.1 to 30 uM.
doi:10.1371/journal.pone.0086299.t003
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drugs selected for cell viability tests. This is significant because the
tests were conducted prior to the analysis of CRC data.

There are limitations inherent to our approach. It depends on
the availability of gene expression profiles of drugs; many FDA-
approved drugs are not among the more than 1,000 compounds
with profiles given in CMap database 2.0 release, the version used
in this work; the implicit perturbagen assumption that the drug-
specific genomic profiles given by CMap are only mildly
dependent on the specific (mostly breast cancer) cell lines requires
validation in every application; the reliability of our results
depends on the quality and accuracies of patient gene expression
profiles, PPI, and GO data; and, specific to this work, how the
drug screening results may depend on the selection of FMs for
drug screening has not been thoroughly studied.

Our results need further experimental validation because
therapeutic efficacy of a drug is always more complex than just
a simple matching of expression profiles, even when conducted in
the refined fashion of FMCM. In addition, not known at this stage
are how components in a compound (Table 2) would interact with
cach other and how the interaction would impact its predicted
property. Such effects can only be assessed in animal model tests
when the selected drugs are applied in compound form.

These limitations are common to all CMap-based or similar
drug discovery methods, yet our method has merits not possessed
by other screening methods. We believe our method is useful for
drug discovery for therapeutic systems treatment not only for
colorectal adenoma, but also for other types of cancer as well as for
other complex diseases and conditions.
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Functional Module Connectivity Map

Figure 8. Clustering of genomic profiles of drug-treated cancer cell lines HCT116 and MCF7. (A) Individual gene approach (IGA). (B)
Gene-set approach (GSA). Cell lines were treated with three drugs: GW-8510, phenoxybenzamine (PB), and imipenem. Entries marked “cmap” were
microarray drug treatment genomic profiles of MCF7 taken from the CMap. Others were from drug treatment microarray experiments (Affymetrix
U219 (PrimeView) platform) conducted for the present study, where the same experimental protocol used in CMap were followed: averaged over
three dosages of 10 M, 11.8 M, 13.4 M; treatment time 6 hours after overnight culture. Heatmaps were results of two-way hierarchical clustering.
doi:10.1371/journal.pone.0086299.g008
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Figure 9. Overlap of candidate repurposed drug sets curated
from colon adenoma and colorectal cancer data sets. Numbers
in brackets correspond to those given in the first column of Table 1,
which lists the drug set for colon adenoma. The overlap includes 9 of
the 13 drugs in Table 1 with degrees not less than 3, and 5 of the 8
drugs selected for cell viability tests marked by “*".
doi:10.1371/journal.pone.0086299.g009

Supporting Information

Figure S1 Assessment of chip quality and sample
classification of colorectal adenocarcinoma paired pa-
tients. (A) Principle Component Analysis. The first component,
with about 35% variances in data, was sufficient to correctly
partition the samples, 32 of adenoma patients and their 32
parental normal tissues, into two groups. (B) T'wo-way hierarchical
clustering analysis. On the side, 2,164 differentially expressed
genes (DEGs) were used for clustering. The DEGs, including 964
up-regulated and 1,200 down-regulated genes, were selected by
the SAM algorithm with thresholds for false discovery rate (FDR)
<0.05 and fold change (FC) >2. On the top, green bar covers the
normal tissue and blue bar, adenocarcinoma.

(TIF)

Figure S2 The gene-gene networks constructed using
gene expression data from normal and colorectal
adenoma patients. There are 1,684 genes and 2,017 links in
the normal network, and 1,792 genes and 2,656 links in the
adenoma network. Genes assigned to over-represented biological
Gene Ontology terms are highlighted in term specific color.

(TIF)

Figure S3 Drugs selected by standard application of
CMap, or IGCM, using different fold change (FC)
thresholds. Sum of up- and down-regulated genes given under
each FC threshold constituted the querying gene set. Drugs listed
are those predicted to be beneficial. Red arrow indicates known
TTD anti-cancer agents that coincidentally all changed from
beneficial at FC =3 to harmful at FC=3.5. Vorinostat was the
only drug selected at FC >3, 3.5, 4.0, and 4.5; it was also selected
in the FMCM procedure.

(TIF)

Figure S4 Specificity of predicted drugs. Specificity is true
negative (known cancer-inducing agent predicted to be harmful)
over all drugs predicted to be harmful; higher specificity implies
lower false positive. Seven of the eight FMCM results (red), except
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immune systems process (cyan), have higher specificities than the
five IGCM results (black).
(TTF)

Figure S5 Enrichment scores of 27 chemo-drugs. The 27
chemo-drugs, selected from the LO1 class (antineoplastic agents) in
the Anatomical Therapeutic Chemical system, are not specific to
colon cancer treatment. The ES is those from five IGCM (FC
threshold 3 to 5) and eight FMCM runs (FC >0.2). Solid symbol
indicates an ES with permutation p value<<0.05. The 27 drugs are
clustered into six groups according to overall pattern.

(TIF)

Table S1 Gene ontology enrichment analysis for func-
tional modules.

(XLS)

Table S2 Gene signature tags used in the FMCM
program.

(XLS)

Table S3 References listed in Table 1.

(XLS)

Table S4 GO terms analysis for genes in the lightblue
block in the IGA heatmap (Figure 8A). Top-10 gene

ontology annotation clusters were determined by DAVID [36].
(XLS)

Table S5 GO terms analysis for genes in the pink block
in the IGA heatmap (Figure 8A). Top-10 gene ontology
annotation clusters were determined by DAVID [36].

(XLS)

Table S6 GO terms analysis for genes in the purple
block in the IGA heatmap (Figure 8A). Top-10 gene
ontology annotation clusters were determined by DAVID [36].
(XLS)

Table 87 GO terms analysis for genes in the green
block in the GSA heatmap (Figure 8B). Top-10 gene
ontology annotation clusters were determined by DAVID [36].
(XLS)

Table S8 GO terms analysis for genes in the blue block
in the GSA heatmap (Figure 8B). Top-10 gene ontology
annotation clusters were determined by DAVID [36].

(XLS)

Table 89 GO terms analysis for genes in the orange
block in the GSA heatmap (Figure 8B). Top-10 gene
ontology annotation clusters were determined by DAVID [36].
(XLS)

Table S10 GO terms analysis for genes in the purple
block in the GSA heatmap (Figure 8B). Top-10 gene
ontology annotation clusters were determined by DAVID [36].
(XLS)
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