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We show that textual analysis of microbial complete genomes reveals telling footprints of their
early evolution. If a DNA sequence considered as a text in its four bases is sufficiently random, the
distribution of frequencies of words of a fixed length from the text should be Poissonian. We point
out that in reality, for words less than nine letters complete microbial genomes universally have dis-
tributions that are uniformly many times wider than those of corresponding Poisson distributions.
We interpret this phenomenon as follows: the genome is a large system that possesses the statis-
tical characteristics of a much smaller random system, and certain textual statistical properties of
genomes observable now are remnants of those of their ancestral genomes, which were much shorter
than genomes today. This interpretation motivates a simple biologically plausible model for the
growth of genomes: the genome first grew randomly to an initial length of not more than one thou-
sand bases (1 kb), thereafter mainly grew by random segmental duplications. Setting the lengths
of duplicated segments to average around 25b, we have generated model sequences in silico whose
statistical properties emulate those of present day genomes. The small size of the initial random
sequence and the shortness of the lengths the duplicated segments both dictate an RNA world at
the time growth by duplication began. Growth by duplication allowed the genome repetitive use of
hard-to-come-by codes increasing thereby the rates of evolution and species diversion enormously.
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I. FREQUENCY OF OCCURRENCE OF
OLIGONUCLEOTIDES IN MICROBIAL

GENOMES

It is a general rule of statistics that the larger the
system the more sharply defined its average proper-
ties. When apples are randomly dropped into barrels,
the distribution of apples in the barrels is governed by
the Poisson distribution. If 1,024 apples were dropped
into sixty-four barrels, there is a 5% chance that one
of the barrels would have less than 8 or more than 24
apples. If 1 million apples were dropped into the bar-
rels the chances that the number of apples received by
any barrel fall outside the range of 14,600 to 16,600
would be exceedingly small, and there is a less than
one in 10980 (10830, respectively) chance that one bar-
rel would get as few (many) as 8,000 (24,000) apples.

Microbial genomes are seemingly random systems
when viewed as texts of the four bases represented
by A, C, G and T. To count the number of times
each of the sixty-four trinucleotides, or 3-mers, occur
in a genome-as-text is similar to counting the number
of apples after they have been dropped into barrels.
The genome of the bacterium Treponema pallidum, the
causative agent of syphilis, is about 1M base pairs long
and has almost even base composition [1]. In an aston-
ishing departure from what is expected of a system of
its size, the genome has six 3-mers (CGC, GCG, AAA,
TTT, GCA, TGC) occurring more than 24,000 times
per 1 Mb and two (CTA, TAG) less than 8,000 times.
Scrambling the genome sequence thoroughly restores
it to a random sequence obeying Poisson distribution
and the large-system rule.

T. pallidum is not exceptional in disobeying the
large-system rule. For the twenty-five complete mi-
crobial “Class A” genomes whose combine probability

TABLE I: For given k’s, standard deviation of k-distributions: for the

genome T. pallidum; averaged over 25 Class A genomes; for a random

sequence; for a Class A model sequence (see text). The last column gives

the length (Lstat) of a random sequence with the genomic ratio of mean

count to std. The figures following ± in the third column give the stds

associated with the average stds. All stds are normalized to correspond to a

base composition of 50% AT (see Methods).

k T. pal Class A Ran. Model Lstat (nt)
2 8227 10610±2107 250 8207 .65±.35
3 3977 4379±707 125 3415 1.0±0.3
4 1384 1490±232 62.5 1202 1.9±0.5
5 434 468±72.5 31.2 402 4.7±1.3
6 129 141±22.3 15.6 134 13±4
7 37.5 41.6±7.0 7.8 45.3 37±12
8 11.0 12.3±2.3 3.9 15.9 110±40
9 3.4 3.76±0.85 1.9 5.9 300±130
10 1.3 1.29±0.34 1.0 2.3 640±300

p for AT or CG content is 0.46 to 0.55, the observed
standard deviation (std) of the distribution of the fre-
quency of occurrence of 3-mers per 1 Mb (hereafter
called 3-distribution) is 4,080±630 around the mean of
15,625. This is about 32 times the std of a Poisson
distribution of the same mean that a random sequence
would yield.

Nor is the statistics of 3-mers special in genomes. In
Table I, column 3 gives the std of the k-distribution,
k = 2 to 10, averaged over the twenty-five Class A
genomic sequences and column 4 gives the std for a
Poisson distribution with mean value 106/4k. The ge-
nomic stds approach those of a random sequence when
k increases beyond 10. For k less than 10, the Poisson
std increases as 2−k with decreasing k whereas the ge-
nomic std increases at a much higher rate, such that
already at k=8 the genomic std is many times greater
than the Poisson std. Because the variance in the ge-
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FIG. 1: Comparison of 6-distributions of genomes (black) and random

sequences (green/gray), with abscissa giving the frequency of occurences

of 6-mers and ordinates showing the number of 6-mers having a given fre-

quency: (A) T. pallidum genome and a random sequence with p = 0.5;

(B) C. muridarum genome and a random sequence with p = 0.6; (C) M.

jannaschii genome and a random sequence with p = 0.7

nomic std is typically much smaller than the difference
between the genomic and Poisson stds, the genomic k-
distribution differs from the Poisson distribution in a
universal fashion. Hence we shall speak of a universal
(Class A) genome.

The base composition of a genome has a conspicu-
ous effect on its k-distributions. The black curve in
Figure 1 shows 6-distributions of three representative
genomes: (A) T. pallidum with p ≈ 0.5; (B) Chlamy-
dia muridarum [2] with p ≈ 0.6; (C) Methanococ-
cus jannaschii [3] with p ≈ 0.7. For comparison the
green/gray curves in the figure show 6-distributions
of random sequences with p = 0.5, 0.6 and 0.7, re-
spectively. The k-distribution of a random sequence
is composed of k+1 Poisson distributions with mean
frequencies 106 2−kpm(1-p)k−m, m=0 to k, which coa-
lesce into a single Poisson distribution when p is close
to 0.5. In contrast, narrow sharp spikes are completely
absent in the 6-distributions for the microbial genomes.
In what follows we leave aside whatever complication
large differences in base composition may cause and
first focus our attention on Class A genomes.

II. MICROBIAL GENOMES ARE LARGE
SYSTEMS WITH SMALL-SYSTEM

STATISTICS

The (Class A) universal genome has the statisti-
cal property of a random sequence much shorter in
length than itself. To see this, we define the “statisti-
cal length” Lstat of the universal genome as the length
of a random sequence that has a k-distribution with a
mean to std ratio equal to that of the corresponding
genomic ratio r. Then Lstat=4kr2, and its values for
the various k’s are given in the last column of Table I.
Lstat has a strong k dependence: it is very short for the
smaller k’s - of the order of 1 kb for k≤3 - and grows
rapidly with k. When k=10 it is about half the length
(normalized to 1 Mb) of the real genome.

A signature of the universal genome, by comparison
to a random sequence, lies in its very large numbers

of both overrepresented and underrepresented oligonu-
cleotides. As a typical representative of the univer-
sal genome, the genome of E. coli [4] has 500 and
510 6-mers whose frequencies of occurrence are greater
than 400 and less than 100 per 1 Mb, respectively,
while a random sequence has none in either category.
There are many known examples of individual oligonu-
cleotide that exhibit extreme relative abundance. For
dinucleotides this was noted to be common and has
genome-wide consistency [5]; tetra- and hexapalin-
dromes are almost always underrepresented in bacte-
riophages and are systematically underrepresented in
bacteria where 4-cutting and/or 6-cutting restriction
enzymes are common [6]; an 8-mer that appears as Chi
sites, hotspots of homologous recombination, is highly
overrepresented in E. coli [7]; in the human pathogens
Haemophilus influenzae [8, 9] and Neisseria [10] there
are 9- and 10-mers functioning as uptake signal se-
quences that are vastly overrepresented. The causes
for these extreme cases are generally not known and,
with the exception of the dinucleotides, such individual
cases do not decisively determine the statistical prop-
erties of a genome.

What caused a genome to have k-distributions so
much wider than those of a random sequence? Natural
selection suggests itself as a prime explanatory candi-
date. For instance, the 64 frequencies of codons, 3-mers
used by the genome to code proteins in genes, exhibit
very wide distributions. But natural selection by it-
self does not directly cause any change in a genome.
Such changes are caused by random mutations and
other stochastic mechanisms. Natural selection may
account for what changes come to pass; if, however,
such changes always tend to promote or retain a ran-
domness that exhibits Poisson distribution, then the
ability of natural selection to push the genome very far
in a non-Poissonian direction would seem to have its
limits.

III. MODEL FOR EARLY GENOME GROWTH

Here we propose a biologically plausible model for
the growth and evolution of a universal genome that
can generate the observed statistical characteristics of
genomic sequences. The model is very simple and con-
sists of two phases. In the first phase the genome ini-
tially grows to a random sequence whose size is much
smaller than the final size of the genome. In the second
phase the genome grows by random segmental duplica-
tions possibly modulated by random single mutations.
In this work a snapshot is taken of the model sequence
shortly after it reaches a length of 1 Mb. The key as-
pect of the model is growth by segmental duplication,
the most straightforward and biologically viable way
for the universal genome to become what it appears to
be - a large system that exhibits small-system statisti-
cal characteristics.

Growth by whole-genome duplication [11–13] cou-
pled with mutation is ruled out because such a mode
of growth yields genomes whose k-distributions have
the incorrect k-dependence - their Lstat vary with k
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too weakly. Indeed we found it comparatively easy
to generate a sequence that could faithfully reproduce
the genomic k-distribution for any given k, say k = k′,
but not simultaneously those of other k’s. Typically
such a sequence had an Lstat that has a k-dependence
far too weak than required to fit genomic data and,
consequently, k-distributions that are too narrow when
k < k′ and too broad when k > k′. Ways to generate
several such examples are given in the Methods. Gen-
erating a sequence that would emulate a real genome
was a much more exacting task.

IV. METHODS

Complete microbial genome sequences are ob-
tained from GenBank [14]. The names and GenBank
codes of the 25 Class A genomes (p ≈ 0.5) and the
class of 28 p ≈ 0.7 genomes used in our analysis
are given in the Supporting Information. The codes
for T. pallidum, M. jannaschii and C. muridarum are
NC 000919, NC 000909 and NC 002620, respectively.
Counting of k-mers is done by reading through a k-
base wide sliding window. Counts are normalized to
per 1 Mb and variation in genomic base composition is
compensated for by dividing the actual genomic counts
by the factor L(p/p̄)m((1− p)/(1− p̄))k−m, where p is
the AT (or CG, whichever is more numerous) content
of the genome, p̄ = 0.5 (p̄ = 0.7) for Class A (the class
of p = 0.7) genomes and m is the total number of AT
bases (or CG) in each k-mer.

Generation of model sequence. A random se-
quence of length L0 with a given base composition is
first generated. Thereafter the sequence is altered by
single mutations (replacements only) and duplications,
with a fixed average mutation to duplication event ra-
tio. In duplication events, a segment of length l, chosen
according to the Erlang probability density function
f(l) = 1/(σn!)(l/σ)ne−l/σ, is copied from one site and
pasted onto another site, both randomly selected. In
the above, n is an integer and σ is a length scale in
bases. The function gives a mean duplicated segment
length l̄ = (n+1)σ with std δl = (n+1)1/2σ. The val-
ues n = 0 to 8 and selected values for σ from 3 to 15,000
were used. In the text, the model sequences used to
compare with genomic sequences were generated with
L0 = 1000, n = 4, σ = 5 and without mutation events.
This model has l̄ = 25 and δl = 11.2. When f(l) is
replaced by a Gaussian distribution with the same val-
ues for l̄ and δl, respectively, less satisfactory results
are obtained. Fine-tuning to find the best parameters
was not attempted. The following are some examples
that gave very good k-distributions for specific k-mers
but not generally; all were generated with L0 = 1000
and n = 0: for 6-mer, σ = 13, 000±2, 000 and on aver-
age 0.04σ mutations per duplication (these parameters
also work for genomes with biased base compositions)
[15]; for 2-mer, σ = 50, no mutation; for 5-mer, σ = 30,
no mutation; for 9-mer, σ = 15, no mutation.

Presentation of data. In Figs. 3 and 5 the curves
shown are the result of a small amount of forward and
backward averaging - to remove excessive fluctuations.

FIG. 2: Histograms of k-distributions for genome of T. pal. (black) and

a Class A (p = 0.5) model sequence (orange/dark gray), k=2 to 4, with

abscissa indicating intervals of frequency of occurrence of k-mers and ordi-

nates giving the number of k-mers falling within a given interval of frequency

of occurrence. In each case the histogram of the k-distributions for a ran-

dom sequence would be represented by a single tower located at the mean

frequency 1064−k.

FIG. 3: k-distributions for genome of T. pal. (black) and a Class A

(p = 0.5) model sequence (orange/dark gray), k= 5 to 9. See legend of

Fig. 1 for further detail. The top-left panel shows 6-distributions for T.

pallidum the model sequence and a random sequence (green/gray) with

p = 0.5.

In Figs. 2 and 4 data bunching was used to produce
the towers shown.

V. RESULT

After extensive experimentation, it was found that
sequences having the statistical characteristics sought
after could be generated by choosing: (i) the length
(L0) of the initial random sequence to be approxi-
mately 1 kb; (ii) the average length (l̄) of the (randomly
chosen) duplicated segments to be 25b with a spread
(δl) of approximately 11b. It is emphasized that every
step in the growth procedure is taken stochastically.

The stds of the k-distributions of a model sequence
thus generated are given in column five of Table I.
They agree quite well with the observed genomic values
in columns two and three although their k-dependence
is still slightly too weak. Histograms of k-distributions
of T. pallidum (black) and the model sequence (or-
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ange/dark gray), k=2, 3 and 4, are compared in Fig. 2.
In all three cases, the histogram for a random sequence
would be represented by a single narrow tower located
at the mean frequency. For k=2 and to a lesser ex-
tent k=3, the histograms for both genomic and model
sequences display large fluctuations. The model se-
quence is not expected to exactly reproduce the counts
of the genomic sequence. Indeed, generated stochas-
tically, another model sequence (generated using the
same parameters) will yield histograms that differ in
detail from those shown in the k=2 and 3 panels of
Fig. 2 but show patterns of fluctuation still similar to
those exhibited by the genomic sequence and have stds
very close to those given in column 5 of Table I. Fig. 3
shows comparisons for k=5 to 9. The panel in the
top-left corner gives the 6-distributions from T. pal-
lidum, a random sequence (green/gray) and the model
sequence. In every case the model sequence succeeds
in broadening out the narrow peaks that come with a
random sequence and has k-distributions very similar
to those obtained from T. pallidum.

The same growth model also can account for the k-
distributions of genomes with biased base composition.
We demonstrate this by comparing the k-distributions
for M. jannaschii, which has p ≈ 0.7, with those of a
model sequence in Figs. 4 and 5. The model sequence
was generated using exactly the same procedure and
parameters described above for generating the Class A
model sequence, with the only exception being that the
initial 1 kb random sequence has p = 0.7 rather than
0.5. The distributions for k=2, 3 and 4 are shown in
Fig. 4 as histograms and those for k=5 to 9 are shown
in Fig. 5. The top-left panel of Fig. 5 reminds us that
a k-distribution from a random sequence with p signif-
icantly different from 0.5 has k+1 narrow peaks, which
are wholly absent from the k-distributions of both the
M. jannaschii and the model sequence. Our general
remarks concerning the comparison of k-distributions
of T. pallidum and the Class A model sequence also
apply here. Suffice to say that in all cases the stochas-
tically generated model sequence succeeds in reproduc-
ing key features of the k-distributions of the M. jan-
naschii genome.

The k-dependent statistical lengths Lstat for
genomes with highly biased based compositions can no
longer be extracted from the overall widths, but rather
from widths of distributions of subsets of k-mers with
fixed AT content (see Supporting Information). From
28 microbial genomes with 0.66 ≤ p ≤ 0.75 we ob-
tain for Lstat (in k nt): 0.53±0.30, 1.1±0.6, 2.1±1.1,
5.2±2.5, 14±6, 36±17, 93±44, 230±110, 600±240, for
k = 2 to 10, respectively. These values are in very good
agreement with the Lstat’s given in the last column in
Table I. This strengthens the notion of universality
that microbial genomes are large systems with small-
system statistics. To summarize, we have two pieces
of evidence suggesting that genomes with widely vary-
ing base compositions and content have essentially the
same kind of growth histories, whereby (a) they have
essentially identical sets of Lstat’s and (b) their respec-
tive k-distributions are emulated by model sequences
generated using identical parameters (except in the

FIG. 4: Histograms of k-distributions for genome of M. jan. (black) and

a p = 0.7 model sequence (orange/dark gray), k=2 to 4. See legend of

Fig. 2 for further detail. The histograms for a random sequence would be

given by k + 1 narrow towers.

FIG. 5: k-distributions for genome of M. jan. (black) and a p = 0.7

model sequence (orange/dark gray), k= 5 to 9. See legend of Fig. 1 for

further detail. The top-left panel shows 6-distributions for M. jannaschii,

the model sequence and a random sequence (green/gray) with p = 0.7.

base composition of the initial random sequence). The
implication is that the only significant difference be-
tween the two classes of genomes is in their base com-
position, and this difference was substantially in place
before the genomes began to grow by duplication.

The model sequences are parameter-sensitive. If L0

was significantly longer than 1 kb then no good model
sequence could be found. This is unsurprising because
L0 cannot be much longer than the shortest Lstat in
Table I. If, with L0=1 kb, either l̄ or δl was changed
by more than 10% from their optimal values of 25b
and 11b respectively then the agreement between the
genomic and model sequences would worsen noticeably.

VI. DISCUSSION

In the spirit of simplicity no (point) mutations were
imposed on the model sequences whose properties are
shown here. This is because mutations randomize a
sequence whereas we are looking for a way to stochas-
tically generate model sequences with less randomness
than that of a random sequence. If the model sequence
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were allowed to have too many mutations then a com-
pensating mechanism would have to be found to de-
randomize the sequence. In reality the randomizing
effect of mutation is partially compensated for by the
stabilizing force of natural selection, whose effect is also
not explicitly considered in our model. In any case the
model sequences as given can tolerate about one muta-
tion per two duplication events: twenty thousand mu-
tation fixations reduces the std of the k-distributions
of the Class A model sequence by 4% (for k=2) to 10%
(for k=10).

In bacterial genomes, typically about 12% of genes
represent recent duplication events - 12% in T. pal-
lidum [1], 11.2% in H. influenzae [16] and 12.8% in V.
cholerae [17]. The model sequences presented here do
not explain the pattern of all such duplications, many
of which would involve segments up to several kb long.
Work is underway to extend the model to account for
the genomic pattern of repeat sequences of all lengths.

The generic statistical textual properties of eukary-
otic genomes have also been examined and findings will
be reported elsewhere. So much now is believed to ob-
tain: when the great difference in length between mi-
crobial and eukaryotic genomes is accounted for, what
is said here of the statistical textual properties of mi-
crobial genomes should hold true mutatis mutandis for
eukaryotic genomes.

To be sure there will be many textual aspects of the
generic microbial genome that the growth model pro-
posed here will not be able to account for in detail.
Nevertheless we believe the evidence presented here is
sufficiently strong to support the following proposition:
the ancestors of microbial genomes underwent a funda-
mental transition in their growth and evolution shortly
after they had reached a length of not more than 1 kbp
and had acquired a rudimentary duplication machin-
ery, thereafter grew (and diverged) mainly by stochas-
tic duplication of short segments whose lengths aver-
aged to about 25b. Assuming this model to be sub-
stantially correct we mention some of its implications
for biology and evolution.

Our results suggest that the base composition of
a genome was essentially inherited from an ancestor
whose own composition had been determined either
randomly or by some unknown cause by the time of
the transition to growth-by-duplication and that sub-
sequent compositional changes caused by natural selec-
tion have been minor. If so, the base composition of a
present-day genome should be close to being uniform
over the entire genome because of the relatively small
size of the ancestor genome - regardless of how it came
into being - by comparison to present-day genomes.
Indeed, the base composition is known to be essen-
tially uniform over the entire genome [5] (although cod-
ing regions often have a relatively richer GC content
[3, 16, 18, 19]) and this phenomenon is of unknown
biological significance.

A genome of the order of 1 kbp long is far too short
to encode enough proteins for DNA duplication. Set-
ting the initial length of our model universal genome
to not greater than 1 kbp at the point of transition
to growth-by-duplication thus necessarily implies that

the universal genome began its life in an RNA world
[20, 21], when there were no proteins and when RNAs
had the dual roles of genotype and phenotype (see [22]
for a review). This view of the origin of life was ad-
vocated [23–25] even before RNA was discovered to
exhibit self-splicing and enzymatic activities [26, 27].
Some RNA enzymes, or ribozymes, are very small; the
hammerhead ribozyme is only 31 to 42 nucleotides (nt)
long [28] and the hairpin ribozyme is only 50 nt long
[29]. Hence we can infer with reasonable certainty that
the 1 kbp initial universal genome was of sufficient size
to encode the machinery necessary for sustained evo-
lution and duplication. Our model does not address
the origin of this initial genome. The likelihood that it
evolved from something arising spontaneously before-
hand is enhanced by its short length and supported
by the successful isolation of artificial ribozymes from
pools of random RNA sequences in vitro [30]. The aver-
age duplicated segment length of 25b likely represents
a good portion of the length of a typical ribozyme en-
coded in the early universal genome even if it is very
short compared to a present-day gene that codes for
an enzyme.

Natural selection has been largely ignored in our
model not because it is unimportant in evolution, but
rather because we believe it could not have played a
lead role in generating the non-Poissonian statistical
characteristics of genomes discussed here. Suppose
the genome grew not by segmental duplication but
via “events” in which oligonucleotides were inserted
at random into the genome (event specifics are unim-
portant to our argument) and at every such event the
oligonucleotide was accepted or rejected through nat-
ural selection according to some preference causing a
broadening of the k-distributions of the genome. If the
oligonucleotides had been random, then there would
have been many rejections between acceptions and the
number of events needed to generate a genome with
k-distributions as wide as those of real genomes would
have been orders of magnitude greater than the number
of segmental duplications required to achieve the same
effect. Against a scenario in which change was driven
by natural selection, the principle of parsimony would
dictate that segmental duplication was the overwhelm-
ing dominant force generating the wide k-distributions
we now observe.

As a corollary of the above reasoning, we can con-
sider that uneven codon usage may not have been the
primary cause of the very broad distribution of the 3-
mer counts now seen in genomes. It is much more likely
that codons were evolutionary “spandrels” [31], that is
to say, their rise as codes for proteins came as a con-
sequence of an opportunistic evolutionary adaptation
to the already-wide 3-distribution that had resulted
from growth by duplication. Similarly, many of the
highly under- or overrepresented oligonucleotides that
now have biological functions might have originated as
spandrels.

Our analysis presented here supports the view that
statistical characteristics of present day genomes were
already substantially determined by the characteris-
tics of their ancestors by the time of their transition
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to growth by duplication; conversely, that statistical
characteristics of genomes today can be regarded just
in this manner as a basis from which to explore the na-
ture and properties of early ancestral genomes; further
analysis made along this line of reasoning may bring us
a step nearer in understanding the universal ancestor
[32].

Growth by duplication is in itself a brilliant strat-
egy because it allowed the genome to utilize hard-to-
come-by codes repeatedly, thereby increasing the rates
of evolution and species diversion enormously. For this
strategy to have worked, the length of the duplicated
segments used and the typical length of coding se-
quences must match. This condition is likely met by
our model because most ribozymes in the early univer-
sal genome must have been small. Was this strategy
continued after the “early life” of the universal genome
- after the rise of codons and proteins? If so, then,
with proteins/enzymes much larger than the small ri-
bozymes, the duplicated segments in the post-protein
era must have been much longer than 25b for the strat-
egy to have been effective. In higher organisms many
repeat sequences with lengths ranging from 1 base to
many kilobases are believed to have resulted from at

least five modes of duplication, and about 50% - per-
haps even more - of the human genome is composed
of such duplications [18, 19]. Furthermore, as already
mentioned, typically about 12% of genes in bacterial
genomes represent recent duplication events. So cer-
tainly, the continuity of this strategy into the protein
era is abundantly in evidence. In eventual answers to
questions such as why genes have been duplicated [33]
at the high rate of about 1% per gene per million years
[34], and why in all life forms so many duplicate genes
are found [35–37], this growth strategy, if adopted uni-
versally in genomes, may be a simple and crucial, in-
deed a parsimonious part.
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