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Abstract. Magnetoencephalographic (MEG) measurements record magnetic fields generated from
neurons while information is being processed in the brain. The inverse problem of identifying
sources of biomagnetic fields and deducing their intensities from MEG measurements is ill-posed
when the number of field detectors is far less than the number of sources. This problem is less
severe if there is already a reasonable prior knowledge in the form of a distribution in the intensity
of source activation. In this case the problem of identifying and deducing source intensities may be
transformed to one of using the MEG data to update a prior distribution to a posterior distribution.
Here we report on some work done using the maximum entropy method (ME) as an updating tool.
Specifically, we propose an implementation of the ME method in cases when the prior contain
almost no knowledge of source activation. Two examples are studied, in which part of motor cortex
is activated with uniform and varying intensities, respectively.
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INTRODUCTION

Magnetoencephalographic (MEG) measurements record magnetic fields generated from
small currents in the neural system while information is being processed in the brain
[1]. In the classical cortical distributed model, the activation of neurons in the cortex is
represented by sources of currents whose distribution approximates the cortex structure,
and MEG measurements provide information on the current distribution for a specific
brain function [1]. In practice, given an set of current sourcesJβ , β = {1, . . . ,N} and a
set of magnetic field detectors labeled byl = {1, . . . ,d}, the relation between the field
strengthsMl measure by the detectors and the sources can be expressed as

Ml = ∑N
β=1Aβ

l Jβ + χ; l = 1, . . . ,d, β = 1, . . . ,N. (1)

whereA is a d×N matrix whose elementsAβ

l are known functions of the geometric
properties of the sources and the detectors, as determined by the Biot-Savart law [2],
andχ indicates noise, to be ignored here. The detail form ofA applicable to the present
study is given in [3]. In tensor analysis notation Eq. (1) may be simply expressed as
M = A ·J. In what follows, we adopt the convention of summing over repeated index (β

in Eq. (1)). In standard MEG Eq. (1) appears as an inverse problem: the measured field
strengthsM are given and the unknowns areJ. Since the total numberd of detectors that



can be deployed in a practical MEG measurement is far less than the number of current
sources, the answer to Eq. (1) is not unique and the inverse problem is ill-posed.

A number of methods have been proposed to solve Eq. (1), including the least-
square norm [1, 4], the Bayesian approach [5, 6], and the maximum entropy approach
[7, 8, 9, 10, 11, 12]. In the method of maximum entropy (ME) the MEG data, in the
form of the constraintsM - A·J = 0, is used to obtain aposteriorprobability distribution
for neuron current intensities from a givenprior (distribution). In [12], the method is
implemented by introducing a hidden variable denoting the grouping property of firing
neurons. Here we develop an approach such that ME becomes a tool for updating the
probability distribution [13, 14, 15, 16].

COMPUTATIONAL DETAIL

ME updating procedure. Let the setr be the current intensitiesrβ caused by neuron
activities in the cortex at sitesβ = 1, . . . ,N, and pβ (rβ ) be the probability current
intensity distribution at siteβ . Assuming the N current sources to be uncorrelated, we
define the joint probability distribution asP(r) = ∏N

β=1 pβ (rβ ). The current at siteβ is
thenJβ = 〈rβ 〉=

∫
rβ P(r)drβ . Suppose we have prior knowledge about neuron activities

expressed in terms of the joint prioru(r) = ∏N
β=1uβ (rβ ). The implication is that would

produce currentsJ that does not satisfy Eq. (1) (here without noise). Our goal is to
update from this prior to a posteriorP(r)dr that does satisfy Eq. (1). The ME method
states that givenu(r) and the MEG data, the preferred posteriorP(r)dr is the one that
maximizes relative entropyS[P,u],

S[P,µ] =−
∫

dr P(r) ln(P(r)/u(r)) (2)

subject to constraints Eq. (1). HereP(r) is given by the variational method,

P(r)dr = Z−1u(r)exp(−λ̂Ar )dr , Z =
∫

dr u(r)exp(−λ̂Ar ) def= e−F , (3)

whereλ̂ is a row vector of lengthd whosel th elementλ l is the Lagrangian multiplier
that enforces thel th constraints in Eq. (1),̂λAr = λ l Aβ

l 〈rβ 〉 and the last equality in
Eq. (3) defines the quantityF . BecauseA is known,P(r) is determined byu(r) and the
λ ’s. The elements ofλ are the solutionsλ l = λ̄ l in

Aβ

l 〈rβ 〉
∣∣
λ l =λ̄ l = −∂ lnZ/∂λ

l
∣∣∣
λ l =λ̄ l

= ∂F/∂λ
l
∣∣∣
λ l =λ̄ l

= Ml , l = 1, . . . ,d. (4)

This is the primal-dual attainment equation derived in [11]. Because Eq. (4) is a non-
linear equation in theλ ’s, the search for thēλ ’s is non-trivial.

A standard approach is by iteration, specifically by successive steps of updatingP(r).
To demonstrate this we simplify notation and writeνβ = λ l Aβ

l , or simply ν̂ = λ̂A.
Expectation values of currents can then be calculated through〈rβ 〉=−∂ lnZ/∂νβ . The



updating process may now start withP[0] = u(r) and a set̂λ[0] and proceed with

P[i] (r)dr = Z−1
[i] P[i−1](r)e

−ν̂r dr , Z[i] =
∫

P[i−1](r)e
−ν̂r dr , (5)

where[i = 1,2, · · ·] denotes theith updating step andν = λ̂[i−1]A. At each step̂λ[i−1]

is updated tôλ[i] according to Eq. (4). Formally the updating process converges at the

solution of Eq. (4), which is a fixed-pointλ̂∗ of Eq. (5):λ̂[i] = ¯̂
λ = λ̂∗. Then the current

intensities will be fixed-points〈rβ 〉∗ such thatM = M∗ = A〈r〉∗. In practice the fixed-
point may not be reached with infinite accuracy within finite time, and the updating may
be terminated when the quantity

Bmse
def= −10 ln

(
‖M∗−M‖2/‖M‖2

)
(6)

attains a predetermined value. It is important to stress that unless the prioru(r) properly
reflects sufficient knowledge about neuron activities, there is no guarantee that the fixed-
point 〈r〉∗ is closely related to the actual current intensities.

(A) (B)

FIGURE 1. (A): Distribution of current sources used in study. The motor cortex is represented by the
patches 7 to 10. (B): Distribution of magnetic field detectors on a hemisphere 2 cm from the scalp.

Sources with Gaussian distributed intensities. Pertinent general information on the
geometric structure of the cortex and neuron activities, readily obtained from experi-
ments such as functional magnetic resonance imaging (fMRI), positron emission tomog-
raphy (PET), etc., is incorporated in a distributed model [5] in which current sources,
modeled by magnetic dipoles, are distributed in regions below the scalp. A schematic
coarse-grained representation of this model is shown in Fig.1A, where 1024 dipoles are
placed on 16 planar patches, 64 dipoles to a patch, eight of which are parallel to the
scalp and the other eight normal. Regardless of the orientation of the patch, all dipoles
are normal to the cortical surface with the positive direction pointing away from the
cortex.

Information contained in a prior may be qualitative instead of quantitative. Here, our
prior will include the information that the activation resides in a part of the motor cortex
that in Fig.1A is represented by the patches 8 and 9, and utilize this prior information by
placing a higher concentration of field detectors in the area nearest to those in Fig.1B.
There is additional information such as neuronal grouping property. We follow Amblard



et al. [12] and group dipoles into cortical regionsCk, k = 1,2, . . .K, each containingnk
dipoles with thenk’s satisfyingN = ∑K

k=1nk. Associated withCk is a hidden variableSk
that expresses regional activation status:Sk=1 denotes an “excitatory state”, or a state of
out-going current;Sk=-1 denotes an “inhibitory state” (in-going current);Sk=0 denotes
a “silent state” (no current). With this grouping, the prioru(r) reduces to a sum of
probability distributionsu(r ,S) over all possible configurations ofS= {S1, · · ·SK}:

u(r)dr = ∑Su(r ,S)dr = ∑Sµ(r |S)π(S)dr = ∏K
k=1∑Sk

µ(rk|Sk)π(Sk)dr , (7)

whererk = {rη |η ∈Ck} specifies the current densities of the sources inCk; µ(rk|Sk) =
∏η∈Ck

µ(rη |Sk) is the conditional joint probability of the dipoles inCk being in state
Sk and having current densitiesrk; π(Sk) is the probability of the regionCk being in
activation stateSk. For µ(rk|Sk) we adopt a Gaussian distribution for activated states
[7, 8, 12]:

µ(rk|Sk 6= 0) = ∏
η∈Ck

1√
4πσ

exp

[
− 1

2σ
(rη −ρη [0])

2
]
. (8)

For simplicity, all current distributions have the same standard deviationσ . Current
sources at different sites have different mean intensitiesρi[0] whose signs also indicate
the state of activation: positive for excitation and negative for inhibition. For silent states
we letµ(rk|Sk = 0) = δ (rk) = ∏η∈Ck

δ (rη). We also writeπ(Sk 6= 0) = 1−π(Sk = 0) =
αk, where 0≤ αk ≤ 1. We thus have,

uG(r) = ∏K
k=1∑Sk

µ(rk|Sk)π(Sk) = ∏K
k=1 [(1−αk)δ (rk)+αkµ(rk|Sk 6= 0)] , (9)

where subscript G denotes Gaussian distribution. This form simplifies the computation
significantly. At theith iteration we have:

Z[i] = ∏K
k=1

(
∏i−1

j=1Zk[ j]

)−1[
1− α̂k[i−1] + α̂k[i−1]∏i

j=1exp
(
FCk[ j]

)]
, (10)

〈rη〉[i] = α̂k[i]ρη [i], ρη [i] = ρη [i−1]−σνη [i−1], (η ∈ Sk), (11)

α̂k[i] = α̂k[i−1]

(
α̂k[i−1] +

(
1− α̂k[i−1]

) i

∏
j=1

exp
(
−F̄Ck[ j]

))−1

, (12)

whereα̂k[0] = αk andFCk[i] = ∑η∈Ck
(2σ)−1

[(
ρη [i]

)2− (ρη [i−1]
)2]

.

In the absence of any other prior information we takeα to be a random number (be-
tween zero and one),|ρβ [0]| to have a random value up toρmax= 20nA, the maximum
current intensity that can be generated in the brain, andσ to be the mean of|ρβ [0]|.
However, the inverse problem being ill-posed, and since the prior contains no activation
information, the above strategy produces poor results as expected.
Better priors by coarse graining. In the absence of prior information on the activation
pattern, one way to acquire some “prior” information from the MEG data itself is
by coarse graining the current source. Coarse graining reduces the severity of the ill-
posedness because the closer the number of current sources to the number of detectors,



the less ill-posed the inverse problem. Within the framework of the ME procedure
described above, coarse graining can be simply achieved by settingρη for all η in a
given regionCk to be the same. Here we choose to take an intermediate step that disturbs
the standard ME procedure even less, by replacing the second relation in Eq. (11) by

ρη [i] = 〈rη〉[i−1]−σν̄η [i−1]. (13)

Note that in Eq. (11)〈rη〉 = α̂kρη depends on the probabilityαk common to regionCk,
whereasρη does not explicitly. By replacingρη [i−1] by 〈rη〉[i−1] on the right hand side
of Eq. (13), we force the updatedρη in each iteration to be more similar (although not
necessarily identical). In practice we only use this modified ME to get information on the
activity pattern, rather than the intensity, of the sources. Let〈r〉c be the current intensity

set obtained after a convergence criterion set by requiringBmse≥B{c}
mse(Eq. (6)). We now

define a better prior set of Gaussian meansρ̂c, where, in units of nA,

ρβc =
{

sign(〈rβ 〉c) ρmax, |〈rβ 〉c|> 2,
0, |〈rβ 〉c| ≤ 2.

(14)

These quantities, together with the obtained probabilitiesα̂kc for the regionsCk, define
a prior probabilityP{c}(r), which may then be fed into the standard ME procedure for
computing〈r〉.

This procedure may be repeated by requiringBmse to be not less than a succession
of threshold values,B{c1}

mse < B{c2}
mse < B{c3}

mse < · · ·, such that a successive level of better
priorsρ̂c1, ρ̂c2, ρ̂c3, . . ., andP{c1}(r), P{c2}(r), P{c2}(r), . . ., may be obtained. Eventually
a point of diminishing return is reached. In this work we find the second level prior is
qualitatively better than the first, and the third is not significantly better than the second.

RESULTS

In the following two examples, the 1024 current sourses are partitioned into 16 patches,
eight (4 cm wide and 3.3 cm long) parallel and eight (4 cm wide and 2.3 cm deep)
normal to the scalp (Fig.1A). On each patch lies a 8×8 rectangular array of sources that
are divided into 16 four-source groups; that is,K=256. The interstitial distances on the
horizontal (vertical) patches are 0.57 and 0.47 cm (0.57 and 0.33 cm), respectively. The
distance between the adjacent vertical patches are normally 0.55 cm, but the distance
d89 will be varied for testing, see below. The detectors are arranged in a hemisphere
surrounding the scalp as indicated in Fig.1B. The matrixA of Eq. (1) is given in [3].
The ME procedure is insensitive toσ in the range 5< σ <100. In the coarse graining
procedure we setB{c1}

mse=100 andB{c2}
mse=150. As noted previously, coarse graining a

third time did not produce meaningful improvement on the prior. In the two examples,
artificial MEG data are generated by having the sources on patch have uniform and
varied current intensities, respectively.
Uniform activation on patch 8. In this case the “actual” activity pattern is: the 64
sources on patch 8 each has a current of 10 nA, and all other sources are inactive
(Fig.2A.). With the distanced89 set to be 0.55 cm, the results in the first and second



rounds of searching for a better prior, and in the final ME procedure proper are shown
in Fig.2B. In the plots,Bmseis the defined in Eq. (6) andmseis defined as

mse=−10ln
(∥∥〈r〉[i]− r̄

∥∥2
/‖r̄‖2

)
, (15)

where r̄ represents the actual source current intensity and the indexi indicates the

(A) (B)

FIGURE 2. (A): Contour plot indicates all 64 current sources on patch 8 are activated with an intensity
of 10 nA. Gray scale on the right shows intensity level in units of 10 nA. Artificial MEG dataM used
in this section are generated through Eq. (1). (B):Bmse (top panel) andmse(bottom panel)vs. iteration
number.

iteration number. The solid triangles, squares, and crosses, respectively, give results from
ME iteration procedures for constructing the first prior, second prior, and posterior. It is
seen thatBmserises rapidly in the search for the first prior (solid triangles); four iterations
were needed forBmseto reach 100.Bmseis less than 100 at the beginning of the second
prior search because the prior values for this search is not the posterior of the previous
search, but is related to it by Eq. (14). The same goes with the the relation between
the beginning of the ME proper (crosses) and the end of second prior search (squares).
In the search for the second prior,Bmse increases slowly after the seventh iteration, but
eventually reaches 150 at the 12th iteration. This already suggests that a round of search
for a still better prior will not be profitable. In the ME procedure proper,Bmsereaches
150 quickly at the fourth iteration, followed by a slow rise. After reaching 190 at the
14th iteration the rise is very slow; the final value at the 26th iteration is 195.

The dependence of themsevalue on the ME procedures and the iteration numbers
essentially mirrors that ofBmse. Themsefor the final posterior is 68, which corresponds
to an average of 3.3% error on the current intensities.
Resolving power as a function ofd89. We tested the resolving power of our ME
procedure as a function ofd89. With uniform activation on patch 8, the computedmse
values versusd89 are plotted in Fig.3A. The general trend is thatmsedecreases with
decreasingd89 as expected:mse= 60± 10 whend89 >0.044 cm;msedrops sharply
whend89 is less than 0.04 cm;mseis less than 8 whend89 is less than 0.0044 cm. In the
last instance the ME procedure loses its resolving power because the error on the current
intensity is about 70%. On the other hand,mse= 60±10 implies an error of 5.6±2.6%.
This means that if an error of no more than 8% is acceptable, the ME method should be
applicable to a source array whose density is up to one hundred times higher than that
used in the present study.



(A) (B)

FIGURE 3. (A): msevaluevs. the separationd89 between patches 8 and 9. The distancesd89=0.55,
0.0275 and 0.0035 cm are marked out and labeled (1), (2) and (3), respectively. (B): Reconstructed〈r〉 vs.
source number for the cases (1) (solid line) and case (2) (dashed line) in A.

Resolving power as a function of depth. Signals from sources deeper in the cortex
are in general weaker at the detectors and are harder to resolve. This effect is shown in
Fig.3B. The abscissa gives the source numbers on patch 8 (449 to 512) and patch 9 (513
to 576). The sources are arranged in equally spaced rows of eight, such that 449-456 and
513-520 are just below the scalp, 457-464 and 521-528 are 0.328 cm from the scalp, and
so on. Fig.3B shows that whend89=0.55 cm (solid line), the ME procedure can resolve
all sources (up to a maximum depth of 2.3 cm). This resolving power decreases with
decreasingd89. Whend89=0.0275 cm the ME procedure fails for sources at a depth of 2
cm or greater (that is, sources 496-512 and 561-576 on patches 8 and 9, respectively).
(A) (B)

FIGURE 4. (A): Bmseand msevalues for the case of varied activation on patch 8 (see text). (B):
Reconstructed (dash line) and (artificially generated) actual (black line)〈r〉 vs. current source number on
patches 8 and 9.

Varied activation on patch 8. We tested the ME procedure in a case with a slightly
more complex activation pattern: withd89=0.55 cm, all current sources on patch 8 are
activated, with those near the center of the patch having higher intensities than those in
the peripheral. All other sources are silent. We used random source current densities as



zeroth order prior, employed coarse graining twice, then used the standard ME to obtain
the final reconstructed current intensities. Withd89=0.55 cm, the dependence ofBmse
andmseon the iteration number is shown in Fig.4A. Interestingly for the ME procedure
proper (crosses), only theBmseimproves with iteration, whereas themsevalue remains
a constant at about 18. This value is large compared to the value of 60±10 obtained for
the case of uniform activation (Fig.2B). The solid and dashed lines in Fig.4B indicate
the actual and reconstructed current intensities, respectively, for the sources on patches
8 and 9. These show that the poor result is caused by reconstructed false activation of
sources 550 to 580 on patch 9.
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