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Plan of talk

e Genome and Life

e How did genome grow (life evolve) so quickly
o Textual spectral width & Shannon information
o Universality class of genomes

e Model for genome growth

e Self-similarity & randomness

e Substitution and duplication rates

e Discussion — implication in biology & evolution



Genome and Life

~ Life Is the splendid expression
genome - the ultimate
organization of information




Life 1s highly diverse and complex

Tree of Life

Metamonads
W.F. Doolittle
Scientific American., (Feb. 2000) 90,
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And it fook a long time to get here

Divergence of species
W.F. Doolittle, PNAS 94 (1997) 12751
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Two approaches to Lite Science

1. Local - "Biology”
— Individudl, specificity, unigueness

2. Global - “Physics/Math/Stats”
— Class, generality, universality, model

Today we take the GLOBAL route




Genome Growth,
Entropy & Secona
law of
Thermodynamics

~ How did genomes
generate informatio
JeleigleNlefe])%




Evolution of Genomes and the

Second Law of Thermodynamics

eGenomes

 Grew and evolved (mainly) stochastically, modulated by
natural selection

e Bigger genomes carry more information than smaller ones

- The second law of thermodynamics:

* the entropy of closed system can never decrease

e asystem that grows stochastically tends to acquire
entropy

* |Increased randomness more entropy

Shannon information

e Information decreases with increasing entropy



How did evolution fight

against the Second Lawe

- Genomes are not closed systems, but
the 2nd laow does make it difficult for the
genome 1o simultaneously:

« grow stochastically

e acquire more information
e lose entropy
e gain order

- We propose an answer to this question



Genomes as Text -
Spectral Width &
Shannon Information

~ genomes have far more
information than random
sequences




Genomes
are BIG

A stretch of
genome from
the X chromo-
some of
Homo sapien

http://
www.ncbi.nlm.nih.gov/
entrez/viewer.fcgieval
=2276452&db
=Nucleotide

&dopt

=GenBank

The complete
genome has
2,000,000 such
Pages

| tgctgagaaa acatcaagctg tgtttctect tccccaaag acacttcgea geccctettg

61 ggatccageg cagecgcaagg taagccagat gectetgetg ttgeecteec tgtgggectg
121 ctctectecac gecggeeecce acctgggeca cetgtggeac ctgecaggag getgagetge
181 aaaccccaat gaggggcagg tgetceegga gacctgette ccacacgecce atcgttetge
241 ccccggcettt gagttctcee aggeccctcet gtgecacecct ccctagecagg aacatgecegt
301 ctgeececctt gagctttgea aggtctcggt gataatagga aggtetttge cttgecaggga
361 gaatgagtca tccgtgetce ctccgagggg gattctggag tccacagtaa ttgcagggct
421 gacactctge cctgcaccgg gegecccage teeteceeac ctecctecte catcectgte
481 tccggctatt aagacgggge getcaggggce ctgtaactgg ggaaggtata cccgeeetge
541 agaggtggac cctgtctgtt ttgatttctg ttccatgtce aaggcaggac atgaccctgt

601 tttggaatgc tgatttatgg attttccagg ccactgtgce ccagatacaa ttttctctga

661 cattaagaat acgtagagaa ctaaatgcat tttcttctta aaaaaaaaaa aaaccaaaaa
721 aaaaaaaaaa aaaccaaaaa actgtactta ataagatcca tgcctataag acaaaggaac
781 acctcttgtc atatatgtgg gacctcggge agegtgtgaa agtttacttg cagtttgcag
841 taaaatgaca aagctaacac ctggcgtgga caatcttacc tagctatget ctccaaaatg
901 tattttttct aatctgggea acaatggtgc catctcggtt cactgecaacce tecgetteee

961 aggttcaagc gattctccgg cctcagectc ccaagtaget gggaggacag gecacccgeca
1021 tgatgccegg ttaatttttg tatttttage agagatgggt tttcgeccatg ttggccagge
1081 tggtctcgaa ctectgacct caggtgatee gectgecttg gectcccaaa gtgetgggat
1141 gacaggcgtg agccaccgeg cccagecagg aatctatgea tttgectttg aatattagee
1201 tccactgece catcagcaaa aggcaaaaca ggttaccage ctcccgecac cectgaagaa
1261 taattgtgaa aaaatgtgga attagcaaca tgttggcagg atttttgctg aggttataag
1321 ccacttcctt catctgggtc tgagcttttt tgtattcggt cttaccatte gttggttctg
1381 tagttcatgt ttcaaaaatg cagcctcaga gactgcaage cgetgagtca aatacaaata
1441 gatttttaaa gtgtatttat tttaaacaaa aaataaaatc acacataaga taaaacaaaa
1501 cgaaactgac tttatacagt aaaataaacg atgcctgggce acagtggetc acgectgtca



Genome as text -

Frequencies of k-mers

e Genome is a text of four letters —
A,CGT

* Frequencies of k-mers characterize

the whole genome
— E.g. counting frequen-
cies of 7-mers with a
“sliding window” I (

- AACGGTTACCCGCGTITATATG...

SLIDING WINDOW

— Frequency sef
{f. |i=1 to 4%} N(GTTACCC) = N(GTTACCC) +1

(L AUCC = NS 1AL )




"Portrait” of genome and chaos game

o 1 A F 4 & @ T & & 11 14 18 X3 B 3

A "Chaos Game”

For k-mers, 2 by 2
pixels, one spot gives
color-code frequency
of occurrence for

each k-mer
! | SR s SR e
Has “fractals” raderdi ol N S

BL Hao, HCL & SY Zhang
Chaos, Solitons & Fractals,
11 (2000) 825-836.

Faz. 2. Portrasts of another 4 hactera m K =9 frames



Prominent pattern of portrait determined by frequency
of short oligonucleotides (words). (1) low CTAG; (2) A+T-
rich; (3) AT-rich & high AC, CA, GT, TG; (4) high AA, TT.

a Faz. 6. Some straight ines m a portra.

Fiz. 4. Portrasts of another 4 hacern m & = 8 frames. Note the common crossing patterns i the tvo Mycoplisma.




“Fractal” (pattern of red squares) caused by exireme
under-representation of the palindrome ACGT

K=7
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Fig. 7.The baton of cxag-tagged swings n K =6 109 frames.




Frequency set, k-spectrum &

relative specitral width

Given freq. sef -, Example:
{f; }, define ; 6-spectrum of B. subtilis
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Shannon entropy

e Shannon entropy for a system frequency
set {fiI =, fi=L} or aspectrum {ng Is

H = -2, f/L log (f/L)= - Zrns f/L log (/L)
e SUppose there are Ttypes of events: X, = t.

Then H has maximum value when every
f;1s equal to N/t

H,.,. =logt

 For a genomic k-frequency set: t =4k,
L = genome length.

H,,.,.=2k log2



Shannon information &

relative spectral width

e Shannon information: information is

decrease in H: define
R=logt—H

Shannon called R/H .
redundancy; Gatlin (1972)
called R divergence

* Relation to relative spectral width o=1/2 ¢

(for unimodal distribution)
R =072+ 0(5)

e Shannon information and relative spectral
width are equivalent measures




Huge difference between genomes

and random seguences

Black: genome of E. coli
: matching random sequence
(Red: model sequence)

Number of 5-mers
W
[

| 50/50 | ‘:

i (A) | L

| 17 . _ | . L
0 2000 4000 6000 8000
Frequency of Occurrence



Genomes violently disobey

large-systems rule

e Random sequence: width ~ L2, hence
o~ 1/L"?2 —0Qforlarge L

— J.e., large systems have sharply defined
averages

* Genomes: Ugenome > Orandom
— Widths of genomes do notf decrease with L

e Genomes have far more (Shannon)
InNformation than random sequences



R =log T - H Is a good definition

Table 1:

Shannon entropy H and information R in units of log 2
in the k-spectra of the genome sequence of P. aerophilum and of the

random sequence obtained by randomizing the genome. R, is the

expected information in a random sequence. sequences have AT/CG= 50/50

Random sequence

(Genome sequence
: ' R /R

k H R Re. H R sen - ran
2 3.9999 590 E-6 5.77T E-6  3.973 2.66 E-2 4500

3 59999 372 E-5 346 E-5 5.933  6.65 E-2 1922

4 7.9999 1.72 E-4 162 E-4 7.881 1.18 E-1 728

5 99993 726 E-4 753 E-4 9.821 1.79 E-1 246

6 11.999 294 E-3 290 E-3 11.75 2.74 E-1 94

7 13.988 .18 E-3 1.17 E-3 13.66 3.35 E-1 29

8 15955 478 E-2  4.71 E-2 15.53  4.69 E-1 10

9 17.798 2.02 E-1 188 E-1 17.26  7.33 E-1 3.0

10 19.xxx x.xx E-1 524 E-1  19.xx xxx E-1 :




When A+T Z C+G, k-spectrum is

10

superposition of k+1 subspect

6 ' i ' | ' |
f T | T [
Random

5 i [\ — Bacterial genome |
sequence: (A) ;; 150 /| — Model sequence

Single peak % / ;j - Random sequence |
when A+T and s ol ' 1 S
C+G same. (B) L1 o (C) Pem![ of |]
Otherwise split kg 1| 1o |- I m%‘ m=2"set || |
INfo k+1 o o |l I %" H000 2000 @000-
“m"peaks, = 5N ]
m=0 fo k. 2 “ 50750 | 1
Under each m I N
peak is - (A) || 8000 10000 12000
|

spectrum of
subset of )

I —

Vbl J . , |
: 0 2000 4000 6000
k-mers with
, Frequency of Occurrence
m A+T’s. . y

L
8000

(C) Detail of subspectrum of m=2 set. Otherwise split into k+1 “m”peaks, m=0

to k. Under each m peak is spectrum of k-mer with m A+T's.



Information in 70/30 sequences

Table 2: Shannon information of subspectra F}. ,,, from the genome

C. muridarum and corresponding random sequence.
Sequences have AT/CG=70/30

A’, 1t fm R(_"mur R,‘andom Rgx Rgen/Rran
2,1 52500 [ 739 E-3 5.12E-6 4.76 E-6 1440
3,2 18375 | 207 E-2 213 E-5 204 E-5 963
4,2 2756 | 858 E-2  1.75 E-4  1.50 E-4 490
5,3 964 1.10 E-1  5.10 E-4  4.86 E-4 216
6. 3 145 2.04 E-1 342 E-3  3.34 E-3 60
7.4 50.6 | 2.61 E-1  9.90 E-3  9.72 E-3 26
8, 4 7.60 | 4.79 E-1  6.59 E-2  6.53 E-2 7.3
9,5 2.65 | 3.05E-1 1.890E-1 1.88 E-1 1.6
9, 7 14.5 | 3.03E-1 343 E-2 3.43 E-2 8.8
10,6 093 | 1.02E0 544 E-1 5.37 E-1 1.9
10,8  5.06 | 424 E-1  0.99 E-1  0.99 E-1 6.2




Reduced spectral width &

Shannon informatfion

Recall k-spectrum superposition of k+1 peaks
For each peak, define

M, = (Ogenome'/ ()}ondom)z

and

MR = Rgenomef /Rgenome

For whole k-spectrum, define reduced spectral width
(RSW M, )and reduced Shannon information (RSI M)

Expect
MU (Q) - MR(Q)' MG (an) - MR(Qraﬂ) ~1



Testing My (Q,5) ~ |

(A) Random “matches” of 155 microbial genomes; k=2-10
(B) 100-replica matches of 155 microbial genomes; k=2-10

Reduced Shannon information

RERIT SRR RTT! B A
10" 10°
Sequence length L Sequence length L

10° 10"




A look af
Complete Genomes

~ A universality is discovered




Complete Genomes are diverse
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Measurements

e Measure (by computation)
- reduced spectral widths M

- reduced Shannon information Mg
- k-spectra, k=210 10

- 282 complete sequences (155 microbial
genomes and 127 eukaryotic chromosomes)

e Results
= MG ~ MR
- Plot M, versus L, sequence length



Results: color coded by organisms
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Sequence length L
Each point from one k-spectrum of one sequence; >2500 data

points. Black crosses are microbials. Data shifted by factor 210-k




Color coded by k: Narrow k-bands

Reduced Shannon information

Sequence length L

Data from 14 Plasmodium chromosomes excluded; ~2400 data
points. For each k, 268 data points form a narrow M_~ L “k-band”.




* M, is very large

e For each k all data (268
sequences) form a ik-band

- M./L ~ universal constant (i.e., same for
ALL genomes)



A Universality Class

Each k-band defines @
universal constant
L/M ~ constant =L,
(Effective root-sequence
length)

e Obeys
logL(k)=ak +B

1989 pieces of data giv-
en be two parameters.
a=0.398+-0.038
B=1.61+-0.11

* Defines a universal class

e Plasmodium has separ-
ate class:
a=0.146+-0.012

Effective root-sequence length

-
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A l

§833331 51
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Black: genome data; green: artificial




Replicas &
Root-Sequence Length

~ How to creafe
iInNformation
sfochastically




Replica &

universal root-sequence length

e Take random root-sequence of length L. and
replicate to length L of some genome, then

full sequence will have
M.=L/L, (for any k)

 Or, any sequences obtained by replication of
the root-sequence (i.e. areplica) will have

L/Mo=L,
e A set of replicas of variable lengths all

replicated from (not necessarily the same)
random root-sequences of length L will have

k-independent universal L/Mg =L,




RSl in an m-replica is multiplied m times

(A) Random “matches” of 155 microbial genomes; k=2-10
(B) 100-replica matches of 155 microbial genomes; k=2-10

Reduced Shannon information

RERIT SRR RTT! B A
10" 10°
Sequence length L Sequence length L

10° 10"




Reduced Shannon information

INn Replicas

« Squares: M; in

m-replicas
- root-sequence length
300
- 260 replicas match

profiles of genomes
- sky: k=2,

—_
(-
o

- purple: k=3
- blue: k=4-10

. Crosses: Mg (k=2)
IN genomes

e Replicas like gen-
omes, but lack
k-dependence 10

2 rRTTT AT
10°

10’
Sequence length L

10° 10

Reduced Shannon information

L1 9




A Model for
Genome Growth &
Evolution

~ How did life creafe
information stochastically




A Hypothesis for Genome

Growth

e Random early growth

—  Random b/c has no information

e Followed by

1. random segmental duplication and
2. random mutation

Self copying — strategy for retaining and mulfiple usage
of hard-fo-come-by coded sequences (i.e. genes)



The Minimal Model

e Start with length L,

e Segmental duplication is maximally
stochastic and grow to full length L

— random selection of site of copied segment
— weighed random selection g(l) of length of copied segment

— random selection of insertion site of copied segment
— Biologists: replicative translocation

 Mutation is standard single-point
replacement (no inserfion and deletion)

— Point mutation at rate of r per base



%? = <[((L)moder = (L) gen) /A (L) gen) %>

| =250
Model - .
param- ’ -
eter 2
search: | e
favors N -
very | |
small L, l0g,5%

20 60 80 100 120 140 1860 180 200

40

()




The Minimal Model (cont’'d)

e Best parameters (preliminary; after
non-exhaustive search)
- L,~8b
— r~0.95~1.1(mutations per 100 b)
— g(l): equal probability 0 < /<1,
[.=250~2000 if current seq. length L.<2 Mb
I.= 10000 if L.> 2 Mb
e Generated model sequence set with
same length and composition profile as
complete genome set

« Computed k-spectra, M_, My, L, etc.



5-spectra of “genomes” with different

base compositions

— random il
Black — genome 1.5t 20730 -
- model il |
).
0 5” ( c ) .
Y
1.5 | \e““ |
L _
g 6 1k % 3000 6000 8000 12000
m i L
g 5_— sl ’1'_\ |1a (B ) 60/40 ]
4 ¥ilas:"
W Jl \'RW | -'U“r“ TWPVAN s - e
O 3- % 2000 4000 6000 8000
ol .
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2. (A) |50/50 _
02000 4000 6000 8000

Frequency of Occurrence



Universality classes

> Reduced Shannon information ) Reduced spectral width
10 = | | | | | | ' ! | 3 10' 1 T T T T T T T T
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Red & blue symbols are from (same) model sequences




Selt-Similarity In
Genomes

~ Genomes emulates self-
organized critical systems




Are genomes self similare

* Very small L ,suggests genomes has very
high duplication content

e Our model based on maximally stochastic
segmental duplication reproduce empirical
kK-spectra and L,

e [f genomes are sufficiently uniform, then
genome should exhibit whole-genome
property on a scale of ~L
— i.e. for any segment of length /, should have

M _(k)/l ~ (RSW of whole genome) /L~ L_¢ (K)



M. (k) in 8 randomly selected segments of

length [ = L/2"

Reduced spectral width

Fl;_{lll'(" l: Rsw (Mg) of k-spectra, k=2 to 10, of segments from the
246 Mb chromosome | of H. sapiens. Lengths of the segments are /2"
of full kength, n=1 to 21, and for each length cight segments are randomly
selected. Data for which segment length is less than 4% are not included.
Data for the same k forms a k-band appracimately linear in L (r=d ling),
and each data point has been multiplied by factor of 2!'"=% to delineate
the k-bands for better viewing.



e Given genome length L and RSW M,

e Randomly select set of 25 segments of

length / labeled i and compute M of
segments

e Define

. 1 T , L \’: : a
\"'.“:2_.2 ((lu !“ ) ln!_\ )

e [f v < 1 then on average M /I within factor
of 20f M, /L

* Find
- L,: segment length above which all sets have x> <1
- Ly segment length below which all sets have y? > 1




L, and L, k=5, all complete sequences

Prokarycles

Fi;_’.lll'(" 3 L « (the length above which all ssgments are similar to the
genome; green bars) and L4 (the length below which no segment is similar
to the genome; red bars) for k=5 for all complete sequences in the main

universality class. The blue (yellaw) line is the position of Lnex (Lman).



L,and L, k=2, 4, 6, 8

prokaryotes eukaryotes

Fi;’.’,lll’(‘ d: Ly (green bars) and L (red bars) for k=2, 4, 6 and 8; see

- — 1166000

k=8

o\%

,’J
66000

prokaryotes  eukaryoles

caption for Fig. 3 for more detailed description.



Average Results

Fukaryotes Prokaryotes
[a u 14,{ Id u

-
e
o] ™
.\
* -

2 1.20+2. 18 |2 |.G3+1.25 1.3 5.434+3.60 |2 1.124+1.12 143
P 0624443 E2 0 20=+1.65 E3 0 1.2040%24 E3 1L.TO£1.50 3
| 2.3540.02 E3 884+3.80 K3 266155 E3 3.47+2.61 E3
5 6.3042.03 E3 1. l*wn a1 E4 6154317 E3 7.0444.30 |3
8 1.G3-40.48 FA 3114295 FA 1.534+077 EA |.7540.92 |41
7 1.1241.24 EA 6. ‘U‘ '2 71 FA 3.0041.96 FA .6042.28 |4
8  0.77+3.23 F4 1.76+1.62 K5 11042045 E5 0 1.2040.55 E5

» Prokaryotes: L, ~ L,
 Prokaryotes L, ~ Eukaryotes L,
« Eukaryotes: L, significantly > L,




Average L, and L, versus k

mEwk L @ PFL

Euk.. o PF L
A Prok. [,

Prok. 1t




Compare L, (L,) with similarity length

Table 3: Comparison of 4* and mean values of Lo(k) and L com (k).

I: 4 L,) L gim

2 16 310-+200) 6I0-+570

3 64 GR0-+350 1 300-+9910)
4 256 LGO0-+-TED 2520-+1700

5o 1024 44501900 GEO0-+32010
6 4096 1230045200 1640047200
7 16384 3360015000 42700-+ 18000
S 65536 RO500-+43000  109000-+44000

« L. IS the average of prokaryoftic L, and L ,eukaryofic L,
L, barely L > barely > 4%,
*Hence genomes are almost maximally self-similar



Compare genomic and model L_

A Cenomes [i
Modal (H. sapven) &

‘)

Note: Model
predates data

But model has | 10
smaller spread

Model is too 103
sSMooth




Texture of genome are rougher then model

A+T content (p)

(.54

(.48

(.46

Black: E.ncoli; blﬁe: randorﬁ; green: rﬁodel

()

IC } ”(\ :'C } ”(\ _\\C OGO -1»\‘ FO6

Along length of genome (E. coli)

SC FOG6



Randomness In
Genomes

~ Genomes are nof random
But they are generated by
a highly random process




Word Intervals

e Intervals (spaftial or temporal) between
adjacent random uncorrelated events
have an exponential distribution

e [In a random seguence, intervals of
identical words are exponential

e What is the word-interval distribution in a
(hon-random) genome?e



10000

random —| 11 Interval distribution is expon-
M ccouence RGN ential in random sequence as
: al = 60.5455
8, = OU.O4 expected.
d = 61.5600 ,
But also in genomel

100 =

genome —
= N(di) =Nge

as=79.1264
d =79.4823

10

10000

model

— N(di) =N,.e™ 19F
sequence al=92.2179 :

d =91.5437

1000

100 1000

And in the model sequence
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Evolution rates

~ Putting time in our model




Rates & sequence similarity

e |dentfify substitutions and duplications by
sequence similarity (“blasting”)

e Substitution rate

— K: substitution per site between two
homologous sequences

— T: divergence time of two sequences
— Subst. rate ro = K/2T (/site/unit fime)

e Duplication rate
— N: number of duplication events per site

— Duplication rate r, = N/T (/site/unit time)



Some data on rates for human

e Data

— Estimated silent site substitute rates for plants and animals range
from 1 to 16 (/site/By) (Li97)

— Humans: r_S ~2 (Lynch00) or 1 (Liu03) /site/By .

— Animal gene duplication rate ~ 0.01 (0.002 to 0.02) per gene per
My (LynchQO)

— Human (coding region ~ 3% of genome) translates to 3.2/Mb/My.
— Human retrotransposition event rate ~ 2.8/Mb/My (Liu03)

e Estimate rates for human

rg~ 2 /site/By, rp~ 3.4/Mb/My

e Human genome grew 15-20% last 50 My (Liu03)

e References
— Lynch & Conery Science 290 (2000)
— Liu (& Eichler) et al. Genome Res. 13 (2003)



Rates from growth model

e Arguments

— Can estimate substitution and duplication rate if
assign tfotal growth time

— Human genome still growing last 50 My

— Hence assume total growth fime for human
genome T ~ 4 By

e Getrates average over T
<r¢>~ 0.25/site/By, <rp>~ 0.50/Mb/My

e About 7~8 time smaller than recent
sequence divergence estimates



Bridging the two estimates

 Rates are per length; hence lower when
genome is shorter

* Sequence divergence rates s for last DT~50 My
are terminal rates

* Model rates <r; ;> averaged over whole growth
history, hence <rg > less than r;

* Assume constant (infrinsic) rate r.
and genome grew exponentially
with time

Lt)=L,exp(T/T)



Bridging ... (confinued)

e Number of events in intferval dr at fime ¢ is
dN(t) = r, L(t) dt
« <r>is average over whole T, ris average over
last At ~ 0

e Have /T << I (because <r>/r <<])
and At/T <<,

* Then
r~ry, <r>~r,vT

e Then from ©/T~ <r>/r ~ 1/8
T~0.5By, L,~1Mb.



Human rates and growth

(summary)

e Very roughly, constant rates in human
— site substitution: ry ~ 2 /site/By,
— segmental duplication r, ~ 3.4/Mb/My,

e Growth
— L(t) ~ 0.001 (Bb) L, exp(t/0.5 (By) )

e Remarks
— grew by ~ 12% last 50My
— Liv et al. grew by ~ 15-19% last 50My
— Does not imply L=1 Mb at =0
— Does imply at t << 500My, L~ 1 Mb



Discussion
&

Implications

~ Genomes are close fo being
self-organized critical systems

~ Evolution mostly driven by
neutral events




Summary of results

e Genomes are large systems with small-system stafistics

e Shannon information of complete genomes exhibit
universal lengths; genomes belongs to single universality
class

e Data consistent with simple growth model based on
maximally stochastic segmental duplication and random
point mutation

— For human genome, site substitution and segmental duplication
per site per time rates consistent w/ those extracted by sequence
divergence methods

e Genomes are not random but are essentially randomly
generated
— Has high degree of self-similarity, almost SOC systems

e Model permits universal or multiple ancestor as well as
huge species diversity



Neutral theory of evolution

e Stochastic Duplication/replication was
superb evolutionary strategy

A most efficient way to:
- Grow and accumulate information
- Escape rule of large systems

e Duplication/replication and mutations were

mostly selectively neutral

- because measure not sensitive to coding

- most of eukaryotic genomes are non-coding parts

- Eukaryotes and prokaryotes belong to the same universality

e Corroborates Kimura's neutral theory of
molecular evolution (1948, 1983)

- based on polymorphisms of genes
- most mutations on genes were selectively neutral



Shannon information versus

biological information

e Large Shannon information is necessary
condition for rich biological information

e Growth by random duplication provides an
basis allowing natural selection to fine-tune,
via natural selection, Shannon information
iInto biological information

 The adaptation of the strategy of growth
by random duplication by itself may be a
conseqgquence of natural selection



Are genes "'spandrels’e

* Spandrels N

— In architecture. The roughly
triangular space between an
arch, a wall and the ceiling A
— In evolution. Major category of NA# & B
important evolutionary features »"“'
that were oriainallv ~ A
side effects and did not arise as adop’rohons
(Gould and Lewontin 1979)

*The duplications may be what the arches,
walls and ceilings are to spandrels and the
genes are the decorations in the spandrels



Classical Darwinian Gradualism

or Punctuated equilibrium?

e Great debated in palaeontology and
evolution - Dawkins & others vs. (the late)
Gould & Eldridge: evolution went gradually
and evenly vs. by stochastic bursts with
intervals of stasis

Our model provides genetic basis for both. Mutation
and small duplication induce gradual change;
occasional large duplication can induce abrupt and

seemingly discontinuous change



The RNA World

e RNA was discovered in early 80's fo  have
enzymatic activity — ribozymes can splice and

replicate DNA sequences (Cech et al. (1981),
Guerrier-Takada et al. 1983)

 The RNA world conjecture — early had no proteins,
only RNAs, which played the dual roles of
genotype and phenotype

e Some present-day ribozymes are very small;

smallest hammerhead ribozyme only 31
nucleofides; ribozymes in early life need not be
much larger



RNA World & size of early genome

e |n our model the small initial size of the genome
necessarily implies an early RNA world

e A genome 200~300 nt long is long enough to
code the many small ribozymes (but not proteins)
needed o propagate life

e Origin of this initial genome not addressed in the
model. It (or ifs presursor) could have arisen
spontaneously - artificial ribozymes have been
succcesstully isolated from pools of random RNA
sequences (Ekland ef al. 1995)

 Present-day ribozyme can be as small as 31 nf;
there could be smaller earlier ones.



Growth by duplication may provide

parfial answers to:

e How did life evolve so rapidlye

e How have genes been duplicated at the high
rate of about 1% per gene per million years?
(Lynch 2000)

e Why are there so many duplicate genes in all life
formse (Maynard 1998, Otto & Yong 2001)

e The chromosome exchanges that characterize
mammalian and plant radiations. (O'Brien et al.
1999; Grant, et al. 2000)

 Was duplicate genes selected because they
contribute to genetic robustnesse (Gu et al. 2003)

— Likely not; Most likely high frequency of occurrence duplicate
genes is a spandrel



Many more gquestions to answer

e Tracing natural selection

— Can we show conclusively growth by stochastic duplication is
faster than selection driven (at gene level) growth?

— Can we extend the method to say anything about evolution of
genese (Infroduce roughness in genome?¢)

e Time scale

— When did growth happen? At what ratee How did growth
stabilize¢ Has it stabilizede

— When and how did the codons forme When did protfein arisee

e Phylogeny
— Is the model useful for using whole genomes to build treese
— If so will the result agree with alignment bases analysis?

e Universal ancestor

— Was there a Universal Ancestor ¢ Or were there a group of
Ancestorse
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RNA World & length of duplicated
segments

e Present-day ribozyme can be as small as
31 nt;: there could be smaller earlier ones.

e The average duplicated segment length
of 25 nt in the model is very short
compared to present-day genes that
code for proteins, but likely represents a
good portion of the length of a typical
rioozyme encoded in the early universal
genome of the RNA world



