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A Protein Interaction Map of Drosophila melanogaster
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Drosophila melanogaster is a proven model system for
many aspects of human biology. Here we present a two-
hybrid-based protein-interaction map of the fly
proteome. A total of 10,623 predicted transcripts were
isolated and screened against standard and normalized
complementary DNA libraries to produce a draft map of
7048 proteins and 20,405 interactions. A computational
method of rating two-hybrid interaction confidence was
developed to refine this draft map to a higher confidence
map of 4679 proteins and 4780 interactions. Statistical
modeling of the network showed two levels of
organization: a short-range organization, presumably
corresponding to multiprotein complexes, and a more
global organization, presumably corresponding to
intercomplex connections. The network recapitulated
known pathways, extended pathways, and uncovered
previously unknown pathway components. This map
serves as a starting point for a systems biology modeling
of multicellular organisms including humans.

Transactions between proteins provide the mechanistic basis
for much of the physiology and function of all organisms.
Comprehensive analysis of the proteome of any organism
presents an extraordinary challenge. The development of
genome-scale protein-interaction maps is a powerful first step
towards addressing this challenge and provides the
framework upon which a systems-biology understanding of
cells and organisms can be developed.

Yeast two-hybrid is a facile method that captures a
significant fraction of meaningful protein-protein interactions
and complexes (/). Two-hybrid can be applied in high
throughput mode across the entire proteome of an organism

to produce a comprehensive protein-protein interaction map
(2, 3). Given the value of the Drosophila system as a model
for human biology, disease, and development, we capitalized
upon the recently available Drosophila genome sequence and
predicted transcriptome (4) to build a genome-scale protein
interaction map. This map and its analyses are presented here.

Cloning of the transcriptome. To begin building the
map, a high throughput effort was mounted to isolate cDNAs
representing each predicted transcript of the genome (Figure
1). These efforts employed pooling and full-genome cloning
in concert for maximum representation and normalization of
the Drosophila proteome, with the concomitant drawback of
possibly identifying non-biologically-relevant interactions
between proteins not simultaneously present in vivo. Primers
were designed to the 5' and 3' ends of 14,202 open reading
frames predicted by release 1 or 2 of the genome sequence (4,
5). The PCR template was a pool of cDNA libraries from
embryonic, larval, pupal, and adult stages. PCR product was
obtained from 12,278 reactions. These products were cloned
into both DNA-binding domain (bait) and DNA-activation
domain (prey) two-hybrid vectors (see supplementary
methods). Clones whose inserts matched the predicted size,
whose 5" and 3’ ends matched the predicted sequence, and
which did not self-activate the reporter system as baits were
used further: 11,282 total (9647 both bait and prey; 976 bait
only; 659 prey only).

Construction of a draft map. Two strategies were
performed for two-hybrid screening. First, individual bait
fusions were screened against two cDNA libraries (cDNA
screen). Second, individual bait fusions were screened against
a pool of the 10,306 preys (collection screen). Screening was
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performed by the mating method (3) (see supplementary
methods).

Following screening, prey sequences were obtained from
63,093 diploid clones. Sequences were matched to predicted
transcripts and coding domain sequences from Berkeley
Drosophila Genome Project Genome Annotation Release 3.1
(see supplementary methods for details). Over 90% of the
prey sequences matched at least one transcript or coding
sequence. We constructed a locus-based map, rather than a
transcript-based map because many sequences could not be
unambiguously assigned to splice variants (e.g. if an
interaction occurred through a domain shared by two or more
variants). Prey sequences were mapped successfully for
53,834 diploids, corresponding to unique interactions
involving 7048 of the 13,656 protein-coding gene loci. An
additional 34 interactions were identified between protein-
coding genes and predicted non-protein-coding genes, 33
with RNA genes and 1 with a transposable element. The
entire set of 20,439 interactions is available (Supplementary
table S7).

Automated confidence scoring of two-hybrid
interactions. An important aspect of genome-scale data is the
assignment of confidence metrics to data points. To provide a
uniform basis for assessing the confidence of two-hybrid or
other interaction data types, we developed a systematic
statistical approach. Statistical model building incorporated
experimental data, which had been stored from screening, and
topological criteria, including measures of local clustering (6—
8).

Two training sets were generated for modeling, one by
manual annotation and a second by an automated method.
Self-interactions were excluded from both. The manual
training set was generated as following. An expert biologist
reviewed the list of interactions on the basis of the names of
the proteins in each interaction pair. High confidence
interactions were those published previously and generally
accepted to be correct, or those involving two proteins of the
same complex. Low confidence interactions were those
highly unlikely to occur in vivo, such as an apparent
interaction between a nuclear and an extracellular protein.
High and low confidence assignments were made purely on
the basis of the identities of the proteins in each pair, such
that statistics from screening could be used to predict
interaction confidence.

The automated training set containing both positive and
negative examples was generated by comparing the
Drosophila interactions with physical interactions identified
in yeast through a systematic immunoprecipitation-mass-
spectroscopy-based approach (9, 10). Positive examples were
interacting proteins whose yeast orthologs had reported
interactions (Supplementary table S3, S4). Negative examples
were Drosophila interactions whose yeast orthologs were a

distance of 3 or more protein-protein interaction links apart,
because pairs of yeast proteins selected at random have a
mean distance of 2.8 links. The final positive training set
contained 129 examples (70 manual, 65 automated, 6
common to both), and the final negative training set contained
196 examples (88 manual, 112 automated, 4 common to
both).

A generalized linear model was fit to the training set using
a stepwise procedure to eliminate statistically redundant or
non-informative variables. Significant predictors included the
number of times each interaction was observed in either the
bait/prey or prey/bait orientation, the number of interaction
partners of each protein, the local clustering of the network,
and the gene region (5' UTR / CDS /3" UTR). While
apparent reading frame of the prey relative to the activation
domain was a significant predictor on its own, other
predictors mask its contribution; retaining reading frame does
not improve the final model. The dividing surface between
high-confidence and low-confidence was designed to be 0.5
(Fig 2A,B). The fully cross-validated false-positive and false-
negative rates for the training set were 16% and 21% (see
supplemental methods).

To validate the biological relevance of the statistical
model, we examined GO annotations for pairs of interacting
proteins binned according to confidence scores (Fig. 2C). The
confidence score for an interaction correlates strongly with
the depth in the hierarchy that two proteins share an
annotation. The correlation increases steeply for confidence
scores of 0.5 and higher, supporting the choice of 0.5 as the
threshold for high-confidence interactions.

A refined high-confidence map. Applying the statistical
model to the entire data set, we obtained a high confidence
map of 4780 unique interactions involving 4679 proteins
(Fig. 1). The dominant effect of the confidence scores is to
remove highly connected proteins whose interactions may be
non-specific (Fig. 2A,B): while only 23% of the interactions
are retained in the high confidence network, 66% of the
proteins are retained. Based on the classification accuracy for
the training set, we infer that filtering has effected a 3.4-fold
enrichment in the fraction of biologically-relevant
interactions in the high-confidence subset, with 40% of the
retained interactions likely to be biologically relevant (see
supplemental methods). The resulting network consisted of a
giant connected cluster (3039 proteins, 3659 interactions) and
565 smaller clusters (2.8 proteins, 2.0 interactions per cluster
on average).

The distribution of interactions per protein decays faster
than the power law predicted by a “rich-get-richer” model of
scale-free networks (the probability that a recently evolved
protein establishes a connection to a second protein is
proportional to the number of existing interaction partners of
the second protein) (Figure 2D). This rapid decay suggests
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that highly connected proteins may be suppressed in
biological networks, and supports a previous observation that
connections between highly-connected proteins are also
suppressed (/7).

Enriched and depleted protein and interaction classes.
Proteins were classified according to a reduced set of GO
categories (Supplementary table S1) and Pfam domains
(release. 8.0). We first identified protein classes significantly
enriched or depleted in the high-confidence network
(Supplementary table S5). Enriched classes relate primarily to
DNA metabolism, transcription, and translation. Depleted
classes are primarily plasma membrane proteins, including
receptors, ion channels, and peptidases. Enrichment and
depletion of specific classes may be due to technical biases of
the two-hybrid assay.

We then classified each interaction according to its
corresponding pair of protein classes to identify class-pairs
that are enriched in the network. Rather than using a
contingency table (/2), we used a randomization method to
calculate statistical significance (see supplementary methods).
Enriched class-pairs involving structural domains (Pfam
annotations) may represent binding modules and could
provide the biological rules for building multi-protein
complexes. We identified 67 pairs of Pfam domains enriched
with a p-value of 0.05 or better after correcting for multiple
testing (Supplementary table S6). These include known
domain-pairs (F-box/Skp1, p-value = 9x1072°; LIM/LIM-
binding, p-value = 5x10°%; actin/cofilin, p-value = 2x107") as
well as domain-pairs involving domains of unknown function
(DUF227/DUF227, p-value = 9x107%; cullin/DUF298, p-
value = 0.0003). An additional 88 domain-pairs are
significant at p = 0.05 before correcting for multiple testing
and may represent additional biologically relevant binding
patterns.

Properties of the high-confidence protein interaction
network. Protein networks are of great interest as examples
of small world networks (/3—15). Small world networks
exhibit short-range order (two proteins interacting with a third
protein have an enhanced probability of interacting with each
other) but long-range disorder (two proteins selected at
random are likely to be connected by a small number of links,
as in a random network).

Small-world properties arise in part from the existence of
hub proteins, those having many interaction partners. Hubs
are characteristic of scale-free networks, and the
Drosophila network resembles a scale-free network in that the
distribution of interactions per protein decays slowly, close to
a power law (Fig. 2D). To determine the signature of
biological organization in small-world properties beyond
what would be expected of scale-free networks in general, we
calculated properties for both the actual Drosophila network
and an ensemble of randomly rewired networks with the same

distribution of interactions per protein as the original
network. We considered only the giant connected component
to avoid ill-defined mathematical quantities.

The distribution of the shortest path between pairs of
proteins is peaked at 9-10 protein-protein links (Fig. 3A). A
logistic-growth mathematical model for the probability that
the shortest path between two distinct proteins has £ links is

,1 ’
(N_l) K (E;N’J), where
. b _ ¢
K(E’N’J) 7 N/ [1 * (N l)f ] is the number of proteins

within £ links of a central protein and the symbol ' indicates
differentiation with respect to #,

K'(d:N.J)= NN -1) gy [ie (V-1 T

While this model fits the ensemble of random networks, the
fit to the actual network is less adequate.

Small-world properties of biological networks may reflect
biological organization, and hierarchical organization has
been used to describe the properties of metabolic networks
(6). We tested the ability of a simple, two-level hierarchical
model to describe the properties of the Drosphila protein
interaction network. The lower level of organization in this
model represents protein complexes, and the high level
represents interconnections of these complexes. In this case,
the probability Pr( ) that the shortest path has £ links is

Pr(¢)=(N,N, -1) [1<’(f;N2,J2)+ K'(6N N ) +

l
J| ek GV N K (- GNLT) |

where N is the number of cluster, N, the number of proteins
per cluster, and J;+J, is the number of neighbors per protein,
with J, within the same cluster and J; in other clusters.The 2-
level model provides an improved fit to the distance
distribution for the observed network, although the
improvement is not significant at p = 0.05 ( )(2 decreases by
2.118 with 2 and 19 df| p-value = 0.16; see supplementary
methods for fitting parameters).

Within multi-protein complexes, enhanced connectivity
should yield loops of interacting proteins, which in the
network form triangles, squares, pentagons, etc. An excess of
loops, a signature of clustering, is observed in the Drosophila
network (Fig. 3B).

Quantifying the enhancement of loops provides another
route to extracting parameters for a hierarchical model of
network organization. For the 2-level model in which proteins
are organized into N; complexes with N, proteins per
complex, with J; between-complex links and ./, within-
complex links per protein, the number of loops is

(# loops of perimeter L) =
(i +) 2L+ N,(J3 [2L)exp(~L* /2N,

Loops are enhanced until the perimeter of the loop is on
the order of the square root of the number of proteins in a
typical complex. For the actual network, the 2-level model
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provides a significantly better fit than the 1-level model (p =
4.5x107°); for the random network, the fits are
indistinguishable (p = 0.996).

The 2-level models based on the distribution of shortest
paths and the distribution of closed loops give differing
estimates of the number of within-complex neighbors per
protein (0.8 vs. 2.2), between-complex neighbors per protein
(0.1 vs. 0.8), and the number of proteins in each complex (7
vs. 40). This difference arises in part because we employed a
continuous model for the shortest path distribution and a
discrete model for the loop distribution. The difference may
also arise because the shortest path distribution depends on
long-range connectivity in the network, the closed loops
distribution depends on short-range connectivity, and
properties of finite, small-world networks, such as the
effective dimensionality, are known to depend on the distance
scale measured. Thus, while the evidence for hierarchical
organization in the network is highly significant, it may be
premature to establish a direct, quantitative connection
between parameters of the mathematical model and the
composition of real protein complexes.

In summary, the statistical analysis shows that the
Drosophila network is a small-world network that displays
two levels of organization: local connectivity potentially
representing interactions occurring within multi-protein
complexes and more global connectivity potentially
representing higher order communication between
complexes.

Global views of the protein interaction map. Two global
views of protein interaction network are illustrated: a protein
class/human-disease-protein view (Fig. 4A) and a subcellular
localization view (Fig. 4B). In both panels, interaction lines
are color coded according to predicted confidence score.

Figure 4A is particularly relevant to understanding human
disease and potential treatment. In Fig. 4A Protein discs are
color-coded according to broad classes of molecular functions
as taken from the Gene Ontology annotations (see legend,
(16)). Many of these classes are suitable targets for the
development of small molecule drugs. Drosophila proteins
with sequence similarity to human disease proteins are
denoted by a star outline (according to the Homophila
database; (/7)). The linkage of proteins altered in human
disease to enzyme classes, some of which are druggable,
provides insight into the potential development of
therapeutics for human diseases such as cancer, heart disease,
or diabetes. As shown in Fig. 4A, The homophila gene BCL6
(CG1832), a transcription factor involved in the pathogenesis
of human B-cell non-Hodgkin lymphoma [(/7a)] is
connected to calcium-dependent phosphatases CanAl and
Pp2B-14D. CG1832 is connected via the calcium binding
protein Eip63F-1. Perhaps BCLG6 is regulated in a manner
akin to the regulation of NFAT which is dephosphorylated

thereby inducing its nuclear translocation [(/7b)]. The results
shown here raise the speculation that therapeutic intervention
of calcineurin phosphatases therefore may be an attractive
strategy to treat lymphomas and other cancer types. Given the
proven utility of Drosophila as a model system, many of the
linkages uncovered in this view should be examined for their
conservation in human cells.

Figure 4B, a global analysis of protein interaction
topology, shows proteins whose sub-cellular localizations are
annotated in the Gene Ontology database along with their
neighboring proteins. Overall the proteins were laid out
according to three broad classes of subcellular localization:
nucleus, cytoplasm, and plasma membrane/extracellular
space.

Analysis of this subcellular localization view allows the
prediction of the subcellular localization, and potential
function, of proteins which have not been studied or
annotated previously. In Fig. 4B, a local protein interaction
network is enlarged which includes, several proteins
annotated as nuclear (Srp54, su(w[a]), CG5343, CG11266,
CG10689). Highly connected to these are several additional
proteins whose localizations are not annotated (CG6843,
CG31211, CG14104, CG10324, CG14490, CG14323).
Analysis of their sequences using PSORT I & II
(http:www.psort.org) indicated that four of the six proteins
have >90% probability of being nuclear (CG6843, CG31211,
CG14104, CG10324). CG14490 and CG14323 are not
necessarily predicted to reside in the nucleus (30% and 10%
predicted probabilities). However, they may represent nuclear
proteins, which lack detectable signatures of nuclear
localization or proteins that shuttle between compartments.

The analysis underlying the figure allows one to query the
relative frequencies with which proteins interact with partners
from the same or different compartments. The biological
expectation is that interactions would be most frequent
between proteins within the same compartment with
interactions between compartments, which represent inter-
compartment communication or protein shuttling, being more
rare. As summarized in supplemental table S6 we observe
strong enrichment of nuclear-nuclear, cytoplasm-cytoplasm,
cytoskeleton-cytoskeleton, and endoplasmic reticulum-
endoplasmic reticulum interactions. Inter-compartment
interactions (e.g. nucleus-plasma membrane, extracellular-
nucleus) tend to be depleted from the data set, consistent with
the view that inter-compartment communication is a
relatively rare regulatory event. While this global analysis
meets with the expectation that interactions within a
compartment would be observed more frequently than those
between compartments, it is gratifying that this is seen
quantitatively in the two-hybrid network generated by high
throughput means. The two-hybrid network maintains a
signature of cellular topology.
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Local pathway views. The refined interaction map
provides an opportunity to magnify and examine local
interaction networks. Here we present five pathways in detail.

Transcription: Two transcription regulatory circuits
involving the well-characterized co-repressors CtBP (c-
Terminal Binding Protein) and Gro (groucho) are depicted in
Figure 5A. The binding partners of the two co-repressors are
largely non-overlapping which concurs with existing
evidence that CtBP and Gro repressors independently mediate
short and long-range transcriptional repression (/8). CtBP
interacts with a range of transcription factors including
homeodomain, nuclear hormone receptor, and C2-H2 Zn-
finger proteins, along with the NC2 alpha subunit of the basal
transcriptional machinery. Each CtBP interactor has an
identifiable variant of the known CtBP interaction motif. Gro
interacts with a large group of homeodomain and helix loop
helix domain proteins. Gro interactors are known to interact
through C-terminal WRPW motifs or the engrailed homology
1 (eh1) domains (19, 20). Each HLH protein shown
interacting with Gro (Her, dpn, E(spl), HLHm3, HLHmS,
HLHmdelta) possesses a C-terminal WRPW motif. Among
the homeodomain interactors, three contain a recognizable
ehl domain (Invected, Unc-4 and Ladybird late [Lbl]). The
previously unrecognized Lbl eh1-domain interacting with Gro
may provide the basis for the Lbl-mediated repression of
target genes, such as even-skipped in the embryonic
mesoderm (21).

Splicing: Figure 5B shows an extensive network of
proteins involved in RNA metabolism. The network captures
the regulation of sex determination from X:A ratio to the
machinery responsible for the splicing of doublesex and
fruitless mRNAs (22, 23). Existing evidence indicates that
both Tra-2 and Rbp1 are substrates of Doa kinase (24). Our
pathway recapitulates known interactions and indicates a
pivotal role of Rbp-1 connecting splicing machinery to the
upstream components of the sex determination pathway (25—
27). Three novel proteins (CG14323, CG6843, CG31211) are
linked to splicing components through an extensive set of
interactions. While these proteins have no recognizable RNA
binding motif, the degree of high confidence connectivity
with other splicing components suggests that they are
complex members. The network also reveals the close
association of G-patch domain proteins with splicing factors
and RNA-binding proteins. The G-patch domain is a
conserved motif found in a variety of eukaryotic RNA
processing proteins (28, 29).

Signal transduction: Signal transduction from the
membrane to downstream cytoplasmic processes is illustrated
in Fig. 5C. The network consists of kinases, adaptor proteins
and downstream effectors. Two src isoforms are observed to
bind adaptor proteins, drk, Socs36E and CG2079, that dock to
phosphotyrosine via SH2/PTB domains and recruit other

proteins via their SH3 domains. Within the Sevenless tyrosine
kinase pathway, Drk is known to recruit dos. (30, 31), while
here drk potentially recruits CG13358 and Nek?2 a
serine/threonine kinase. A novel adaptor protein CG2079,
possessing PTB and PH domains similar to those of the IRS
(insulin receptor substrate protein) and DOK (downstream of
kinases) family of adaptor proteins, interacts with two Src
kinases Src64B and Src42A raising the possibility that
CG2079 may link Insulin signaling to Src tyrosine kinases.
Two recently identified mammalian proteins IRS5/DOK4 and
IRS6/DOKS bind Src kinases upon phosphorylation by
insulin receptor (32). Two novel proteins that interact with
the bifunctional adaptor proteins in the pathway are CG15022
and CG13358. Inspection of their sequences indicated that
they both have poly-proline SH3-binding domains. Further
down in the signal transduction pathway, we see recruitment
of machinery controlling actin organization and vesicular
trafficking.

Calcium regulation: Calcium regulates diverse signaling
pathways by binding calmodulin and other calcium-binding
proteins. Calmodulin and related proteins in turn transduce
signal via effector proteins such as kinases and phosphatases.
Figure 5D illustrates a network of calmodulins (Cam and
And), novel calmodulin-like proteins (CG11165, CG31958,
CG11638), calcium-binding proteins, and the calcineurin
family of calmodulin-dependent ser/thr phosphatases. Two
cell surface ion-channels inx2 and KCNQ interact with
calmodulin proteins. Although regulation of inx2 and KCNQ
by calcium has not been reported in Drosophila, their
mammalian counterparts (connexin and KCNQ) are regulated
by calcium (33-35). A potentially significant link between
the tyrosine transporter hoel and two calcineurin
phosphatases is shown. Mutation in human homolog of hoel
causes ocular albinism.

Cell cycle regulation: Fig SE shows the network
surrounding the Skp protein complex (SCF complex) that
targets proteins to ubiquitin-mediated proteasomal
degradation (36). Target proteins are recruited to the Skp
complex by F-box proteins (37-39). Among the Skp proteins,
only SkpA is reported in the literature to bind F-box proteins
(40). Two F-box proteins Morgue and Slmb interact with
SkpA in the pathway. Morgue associates with SkpA to
mediate the ubiquitination of DIAP1 and target its
degradation (47). Other significant target proteins in the
pathway include Rcal, CG9790 (CDK regulator) and skl
(sickle). Real is known to regulate the level of cyclin-A
during the cell cycle (42) and is reported to be an inhibitor of
the anaphase-promoting complex (APC) (43). CG9790 gene
is homologous to the CDK regulatory protein, Cks. Human
Cks-1 is an accessory protein of the SCF complex required
for ubiquitin ligation of the CDK inhibitor p27 (44, 45). The
Sickle (skl) protein is a recently described novel DIAP-

Sciencexpress/ www.sciencexpress.org / 6 November 2003 / Page 5/ 10.1126/science. 1090289



binding protein that induces apoptosis (46, 47). The presence
of skl in the Skp complex suggests that, like Morgue, it may
target DIAP1 to degradation by the SCF complex. As shown
in Fig. 5D, skl protein also interacts with several calmodulin-
binding proteins (Fig. 5C). It is tempting to speculate that skl
may regulate the half-life of these proteins as well. This
network suggests that target proteins may also be recruited to
the Skp complex via Skp-dimerization domain containing
proteins and RNI domain proteins. Of the five RNI domain
proteins in the network, the function of ppa in targeting the
transcription factor paired to degradation has been reported
(48). 1t is suggested that RNI domain proteins may function
as accessory proteins of the SCF complex.

Diverse pathway examples: In Fig SF we present a collage
of 10 diverse networks from the dataset. Three of these
pathways are described here with the others described in
supplementary materials.

Innate immunity: The Imd pathway is a well-characterized
Drosophila-signaling complex involved in innate immune
response against gram-negative bacteria (49). The Imd-BG4-
Dredd protein complex activates the transcription factor
Relish by proteolytic cleavage. Their human orthologs RIP-
FADD-Caspase-8, bind each other in the same order,
suggesting that the organization of the two signaling complex
is evolutionarily conserved. These components are connected
intimately to the protein ubiquitination machinery via ari-2
and the E2 class of ubiquitin ligases (Ubc84D and UbcD10).
A recent study has reported that ubiquitin pathway represses
IMD signaling (50) by targeting the transcription factor
Relish. Our findings suggest that the ubiquitin machinery
may target the upstream components of the signaling complex
as well.

EGF receptor localization: The Egf-veli-skf complex is
similar to the well-characterized C. elegans protein complex
of LET-23- LIN-2-LIN-7 involved in the polarized
localization of the LET-23 receptor (EGF receptor) during
vulval development (57). The veli protein is a PDZ domain
protein (similar to Lin-7) that brings together the receptor and
the skf protein. The latter is a guanylate kinase containing
PDZ and SH3 domains (similar to Lin-2). Veli protein has
been suggested to function in Drosophila nervous system.
However, our pathway suggests the existence of a conserved
protein complex that functions in EGF receptor localization.

Photoreceptor differentiation: The protein complex
associated with Sina functions in Drosophila photoreceptor
differentiation by down regulating the transcription repressor
ttk (tramtrack) in a subset of photoreceptor cells in response
to RAS signaling (52, 53). Our pathway shows that the
adaptor protein phyl (phyllopod) brings together Sina (E3
ligase) and ttk, resulting in the ubiquitination and degradation
of the repressor protein. A recent biochemical analysis has
identified two separate domains in phyl that bind Sina and ttk

(54). A novel interactor in our pathway is rin (rasputin), a
RasGAP protein that functions in eye development as a
regulator of RAS signaling (55). In addition our pathway
suggests a novel function of a yet uncharacterized Drosophila
protein CG13030. The protein shares 45% amino acid
identity to Sina, with a ring finger domain that is similar in
organization to the Sina ring finger domain (C3HC4 type).
Significantly, both the proteins share the same binding
partners. Taking together, the results of pathway analysis and
the domain organization of both proteins suggest that
CG13030 may overlap in function with Sina protein as a
novel regulator of photoreceptor differentiation.

The genome scale network introduced here of course
contains numerous additional local networks that should
prove valuable to the community at large. Our intent is for
this map to serve as a public resource for interested scientists.
We have deposited these interactions with FlyBase, BIND,
and DIP (56).
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Fig. 1. Flow diagram illustrating the process utilized to
generate the genome-scale protein interaction map (See text
for details).

Fig. 2. Confidence scores for protein-protein interactions (A)
Drosophila protein-protein interactions have been binned
according to confidence score for the entire set of 20,405
interactions (black), the 129 positive training set examples
(green), and the 196 negative training set examples (red). (B)
The 7048 proteins identified as participating in protein-
protein interactions have been binned according to the
minimum, average, and maximum confidence score of their
interactions. Proteins with high-confidence interactions total
4679 (66% of the proteins in the network, and 34% of the
protein-coding genes in the Drosophila genome). (C) The
correlation between GO annotations for interacting protein
pairs decays sharply as confidence falls from 1 to 0.5, then
exhibits a weaker decay. Correlations were obtained by first
calculating the deepest level in the GO hierarchy at which a
pair of interacting proteins shared an annotated (interactions
involving unannotated proteins were discarded). The average
depth was calculated for interactions binned according to
confidence score, with bin centers at 0.05, 0.1, ..., 0.95.
Finally, the correlation for the bin centered at x was defined
as [Depth(x)—Depth(0)] / [Depth(0.95)—Depth(0)]. This
procedure effectively controls for the depth of each hierarchy,
and for the probability that a pair of random proteins shares
an annotation (D) The number of interactions per protein is
shown for all interactions (black circles) and for the high-
confidence interactions (green circles). Linear behavior in this
log-log plot would indicate a power-law distribution.
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Although regions of each distribution appear linear, neither
distribution may be adequately fit by a single power-law.
Both may be fit, however, by a combination of power-law
and exponential decay, Prob(n) ~ n “exp *", indicated by the
dashed lines, with /* for the fit greater than 0.98 in either case
(all interactions: = 1.20£0.08, #= 0.038%0.006; high-
confidence interactions: a = 1.2610.25, £ = 0.27£0.05). Note
that the power-law exponents are within 1-o for the two
interaction sets.

Fig. 3. Statistical properties of the refined Drosophila
interaction map. The high-confidence Drosophila protein-
protein interactions form a small-world network with
evidence for a hierarchy of organization. Network properties
are presented for the giant connected component, in which
3659 pairwise interactions connect 3039 proteins into a single
cluster (see text for details). (A) The probability distribution
for the shortest path between a pair of proteins the actual
network (green points) is peaked at 9-11 links, with a mean
of 9.4 links. In contrast, an ensemble of randomly rewired
networks shows a mean separation of 7.7 links between
proteins. Biological organization may be responsible for
flattening the actual network by enhancing links between
proteins that are already close. (B) Clustering, or
enhancement of connections between proteins that are already
close, is analyzed quantitatively by counting the number of
closed loops (triangles, squares, pentagons, etc) in which the
perimeter is formed by a series of proteins connected head-to-
tail, with no protein repeated. The actual network (green
points) shows an enhancement of loops with perimeter up to
10—11 relative to the random network (red points). In both
(A) and (B), the 1-level and 2-level models produce nearly
indistinguishable fits for the random networks, indicating the
absence of structured clustering.

Fig. 4. Global views of the protein interaction map. (A)
Protein family/human disease ortholog view. Proteins are
color-coded according to protein family as annotated by the
Gene Ontology hierarchy. Proteins orthologous to human
disease proteins have a jagged starry border. Interactions
were sorted according to interaction confidence score and the
top 3000 interactions are shown with their corresponding
3522 proteins. This corresponds roughly to a confidence
score of 0.62 and higher. (B) Subcellular localization view.
This view shows the fly interaction map with each protein
colored by its Gene Ontology Cellular Component
annotation. This map has been filtered by only showing
proteins with less than or equal to 20 interactions and with at
least one Gene Ontology annotation (not necessarily a cellular
component annotation). We show proteins for all interactions
with a confidence score of 0.5 or higher. This results in a map
with 2346 proteins and 2268 interactions.

Fig. 5. Local pathway views. (A) Regulation of transcription
repression by Groucho and CtBP proteins. (B) Splicing
complex associated with sex determination. (C) Signaling
complex linking Src kinases with downstream effectors via
adaptor proteins. (D) Regulation of surface transporters and
channels by Calcium signaling. (E) Drosophila Skp pathway.
(F) Examples of local pathway views identified in the
interaction network.
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Predicted transcripts
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(14,202 primer pairs)

PCR products
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5 and 3 sequencing
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Bait self-activation
screen
(536 removed)
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Prey cDNA library Bait array Prey collection
(10,623 baits) (10,787 pooled preys)
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Bait array Bait array
vs. cDNA libraries vs. prey collection
# Clones # Clones
Picked 45962 |« P Picked 45,417
Sequenced 31,760 Sequenced 35,151
Assembled 28,630 Assembled 34,463
Mapped BDGP 3.1 22,564 Mapped BDGP 3.1 31,270
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Protein-protein interactions Protein-protein interactions
# Proteins # Interactions # Proteins # Interactions
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A
Drosophila protein inteaction map
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